Chương I. §11. Hình thoi
Chia sẻ bởi Trần Thị Hồng Thanh |
Ngày 03/05/2019 |
38
Chia sẻ tài liệu: Chương I. §11. Hình thoi thuộc Hình học 8
Nội dung tài liệu:
Tứ giác ở hình vẽ bên có gì đặc biệt ?
HÌNH THOI
Tiết 18
Bài 11:
Nghiên cứu 3 vấn đề sau:
Định nghĩa
Tính chất
Dấu hiệu nhận biết
1. Định nghĩa:
§11:
Hình thoi là tứ giác có 4 cạnh bằng nhau
Tứ giác ABCD là hình thoi AB = BC = CD = DA
?1
Chứng minh rằng tứ giác ABCD ở hình trên là hình bình hành.
Chứng minh
Tứ giác ABCD có : AB = DC, AD = BC nên suy ra tứ giác ABCD là hình bình hành vì có các cạnh đối bằng nhau.
Vậy: Hình thoi cũng là hình bình hành
A
B
C
D
A
C
B
D
O
A
C
B
D
o
dhnb
C
A
D
B
Hướng dẫn vẽ hình thoi :
r
r
r
r
Dùng compa và thước thẳng
B1: Vẽ hai điểm A và C bất kỳ
B2: Dùng compa vẽ hai cung tròn có cùng bán kính với tâm là A và C sao cho cắt nhau tại hai điểm ( B và D )
B3: Dùng thước thẳng nối 4 điểm lại. Ta được hình thoi ABCD
5
2. Tính chất:
§11:
- Các góc đối bằng nhau
Hình thoi có tất cả các tính chất của hình bình hành
- Các cạnh đối song song
- Các cạnh đối bằng nhau
- Hai đường chéo cắt nhau tại trung điểm của mỗi đường
Hoạt động nhóm
1) - Cho mỗi nhóm một tấm bìa có vẽ hình thoi.
- vẽ 2 đường chéo của hình thoi và đánh dấu thứ tự các góc theo hình mẫu trên màn hình.
- Gấp hình theo 2 đường chéo ấy.
2) Hãy nhận xét về:
- Mối quan hệ giữa 2 đường chéo của hình thoi.
§11:
?2
- So sánh 1 và 2; 1 và 2; 1 và 2; 1 và 2
§11:
Hình thoi là tứ giác có 4 cạnh bằng nhau
Tứ giác ABCD là hình thoi AB = BC = CD = DA
2. Tính chất:
Hình thoi có tất cả các tính chất của hình bình hành
1. Định nghĩa:
Định lý:
Trong hình thoi:
Hai đường chéo vuông góc với nhau.
b) Hai đường chéo là các đường phân giác của các góc của hình thoi
A
B
C
D
Chứng minh định lý:
GT ABCD là hình thoi
KL AC BD
AC là đường phân giác của góc A
BD là đường phân giác của góc B
CA là đường phân giác của góc C
DB là đường phân giác của góc D
Chứng minh:
Δ ABC có:
AB = BC ( các cạnh của hình thoi )
Suy ra Δ ABC cân tại B
Lại có: AO = OC ( t/c 2 đường chéo hình bình hành ) nên BO là đường trung tuyến đồng thời là đường cao, đường phân giác…
Vậy: BD AC và BD là đường phân giác của góc B
C/m tương tự, ta có AC là đường phân giác của góc A
CA là đường phân giác của góc C
DB là đường phân giác của góc D
§11:
O
Các tính chất của hình thoi.
§11:
- Các cạnh đối song song
- Các cạnh bằng nhau
- Các góc đối bằng nhau
- Hai đường chéo cắt nhau tại trung điểm của mỗi đường.
- Hai đường chéo vuông góc với nhau.
- Hai đường chéo là các đường phân giác của các góc của hình thoi
3.Dấu hiệu nhận biết :
? Dựa vào định nghĩa hãy cho biết khi nào một tứ giác là một hình thoi.
§11:
A
B
C
D
Tứ giác có 4 cạnh bằng nhau là hình thoi
Dựa vào tính chất của hình thoi, chúng ta sẽ tìm hiểu thêm một số
dấu hiệu nhận biết khác:
A
B
C
D
Hình bình hành
A
B
C
D
Hình thoi
Hình bình hành có 2 cạnh kề bằng nhau là hình thoi
Hình bình hành
Hình thoi
§11:
A
B
C
D
A
B
C
D
Hình bình hành có 2 đường chéo vuông góc với nhau là hình thoi
Hình thoi
Hình bình hành
1 2
1 2
A
B
C
D
Hình bình hành có một đường chéo là đường phân giác của một góc là hình thoi.
4
3
2
1
§11:
Tứ giác có 4 cạnh bằng nhau là hình thoi
Hình bình hành có 2 cạnh kề bằng nhau là hình thoi
Hình bình hành có 2 đường chéo vuông góc với nhau là hình thoi
Hình bình hành có một đường chéo là đường phân giác của một góc là hình thoi.
§11:
?3
Chứng minh dấu hiệu nhận biết 3
GT ABCD là hình bình hành;
AC BD
KL ABCD là hình thoi
Chứng minh
Vì ABCD là hình bình hành nên 2 đường chéo AC và BD cắt nhau tại trung điểm O của mỗi đường.
Do đó O là trung điểm của BD
Mặt khác AC BD nên AC chính là đường trung trực của đoạn thẳng BD
Suy ra AD = AB ( T/c các điểm nằm trên đường trung trực)
Vậy hình bình hành ABCD có AD = AB nên ABCD là hình thoi ( dấu hiệu nhận biết 1 )
Bài tập 73: (SGK /105 ; 106 )
4. Luyện tập :
a) ABCD là hình thoi
b) EFGH là hbh
Mà EG là p/giác của góc E
EFGH là hình thoi
c) KINM là hbh
Mà IMKI
KINM là h.thoi
d) PQRS không phải là hình thoi.
Có AC = AD = BC = BD (Vì cùng bằng R)
ABCD là hình thoi
Hình thoi là tứ giác có 4 cạnh bằng nhau.
Ghi nhớ
a) Hai đường chéo vuông góc với nhau;
b) Hai đường chéo là các đường phân giác của các góc của hình thoi.
Trong hình thoi có:
1. Tứ giác có bốn cạnh bằng nhau là hình thoi.
Dấu hiệu nhận biết:
2. Hình bình hành có hai cạnh kề bằng nhau là hình thoi.
3. Hình bình hành có hai đường chéo vuông góc với nhau là hình thoi.
4. Hình bình hành có một đường chéo là đường phân giác của một góc là hình thoi.
Hãy lập bản đồ tư duy bài
hình thoi?
HĐ nhóm
S
N
Kim Nam châm và la bàn
1.Bài vừa học :
2.Bài sắp học :
- Làm bài tập đầy đủ chuẩn bị tiết sau luyện tập
-Nắm vững định nghĩa , định lí , dấu hiệu nhận biết hình thoi ,chứng minh các định lí .
-Ôn lại tính chất , dấu hiệu nhận biết hành bình hành ,hình chữ nhật
-BTVN : 73 , 74 , 75 , 76 , 77(Sgk/105;106)
HÌNH THOI
Tiết 18
Bài 11:
Nghiên cứu 3 vấn đề sau:
Định nghĩa
Tính chất
Dấu hiệu nhận biết
1. Định nghĩa:
§11:
Hình thoi là tứ giác có 4 cạnh bằng nhau
Tứ giác ABCD là hình thoi AB = BC = CD = DA
?1
Chứng minh rằng tứ giác ABCD ở hình trên là hình bình hành.
Chứng minh
Tứ giác ABCD có : AB = DC, AD = BC nên suy ra tứ giác ABCD là hình bình hành vì có các cạnh đối bằng nhau.
Vậy: Hình thoi cũng là hình bình hành
A
B
C
D
A
C
B
D
O
A
C
B
D
o
dhnb
C
A
D
B
Hướng dẫn vẽ hình thoi :
r
r
r
r
Dùng compa và thước thẳng
B1: Vẽ hai điểm A và C bất kỳ
B2: Dùng compa vẽ hai cung tròn có cùng bán kính với tâm là A và C sao cho cắt nhau tại hai điểm ( B và D )
B3: Dùng thước thẳng nối 4 điểm lại. Ta được hình thoi ABCD
5
2. Tính chất:
§11:
- Các góc đối bằng nhau
Hình thoi có tất cả các tính chất của hình bình hành
- Các cạnh đối song song
- Các cạnh đối bằng nhau
- Hai đường chéo cắt nhau tại trung điểm của mỗi đường
Hoạt động nhóm
1) - Cho mỗi nhóm một tấm bìa có vẽ hình thoi.
- vẽ 2 đường chéo của hình thoi và đánh dấu thứ tự các góc theo hình mẫu trên màn hình.
- Gấp hình theo 2 đường chéo ấy.
2) Hãy nhận xét về:
- Mối quan hệ giữa 2 đường chéo của hình thoi.
§11:
?2
- So sánh 1 và 2; 1 và 2; 1 và 2; 1 và 2
§11:
Hình thoi là tứ giác có 4 cạnh bằng nhau
Tứ giác ABCD là hình thoi AB = BC = CD = DA
2. Tính chất:
Hình thoi có tất cả các tính chất của hình bình hành
1. Định nghĩa:
Định lý:
Trong hình thoi:
Hai đường chéo vuông góc với nhau.
b) Hai đường chéo là các đường phân giác của các góc của hình thoi
A
B
C
D
Chứng minh định lý:
GT ABCD là hình thoi
KL AC BD
AC là đường phân giác của góc A
BD là đường phân giác của góc B
CA là đường phân giác của góc C
DB là đường phân giác của góc D
Chứng minh:
Δ ABC có:
AB = BC ( các cạnh của hình thoi )
Suy ra Δ ABC cân tại B
Lại có: AO = OC ( t/c 2 đường chéo hình bình hành ) nên BO là đường trung tuyến đồng thời là đường cao, đường phân giác…
Vậy: BD AC và BD là đường phân giác của góc B
C/m tương tự, ta có AC là đường phân giác của góc A
CA là đường phân giác của góc C
DB là đường phân giác của góc D
§11:
O
Các tính chất của hình thoi.
§11:
- Các cạnh đối song song
- Các cạnh bằng nhau
- Các góc đối bằng nhau
- Hai đường chéo cắt nhau tại trung điểm của mỗi đường.
- Hai đường chéo vuông góc với nhau.
- Hai đường chéo là các đường phân giác của các góc của hình thoi
3.Dấu hiệu nhận biết :
? Dựa vào định nghĩa hãy cho biết khi nào một tứ giác là một hình thoi.
§11:
A
B
C
D
Tứ giác có 4 cạnh bằng nhau là hình thoi
Dựa vào tính chất của hình thoi, chúng ta sẽ tìm hiểu thêm một số
dấu hiệu nhận biết khác:
A
B
C
D
Hình bình hành
A
B
C
D
Hình thoi
Hình bình hành có 2 cạnh kề bằng nhau là hình thoi
Hình bình hành
Hình thoi
§11:
A
B
C
D
A
B
C
D
Hình bình hành có 2 đường chéo vuông góc với nhau là hình thoi
Hình thoi
Hình bình hành
1 2
1 2
A
B
C
D
Hình bình hành có một đường chéo là đường phân giác của một góc là hình thoi.
4
3
2
1
§11:
Tứ giác có 4 cạnh bằng nhau là hình thoi
Hình bình hành có 2 cạnh kề bằng nhau là hình thoi
Hình bình hành có 2 đường chéo vuông góc với nhau là hình thoi
Hình bình hành có một đường chéo là đường phân giác của một góc là hình thoi.
§11:
?3
Chứng minh dấu hiệu nhận biết 3
GT ABCD là hình bình hành;
AC BD
KL ABCD là hình thoi
Chứng minh
Vì ABCD là hình bình hành nên 2 đường chéo AC và BD cắt nhau tại trung điểm O của mỗi đường.
Do đó O là trung điểm của BD
Mặt khác AC BD nên AC chính là đường trung trực của đoạn thẳng BD
Suy ra AD = AB ( T/c các điểm nằm trên đường trung trực)
Vậy hình bình hành ABCD có AD = AB nên ABCD là hình thoi ( dấu hiệu nhận biết 1 )
Bài tập 73: (SGK /105 ; 106 )
4. Luyện tập :
a) ABCD là hình thoi
b) EFGH là hbh
Mà EG là p/giác của góc E
EFGH là hình thoi
c) KINM là hbh
Mà IMKI
KINM là h.thoi
d) PQRS không phải là hình thoi.
Có AC = AD = BC = BD (Vì cùng bằng R)
ABCD là hình thoi
Hình thoi là tứ giác có 4 cạnh bằng nhau.
Ghi nhớ
a) Hai đường chéo vuông góc với nhau;
b) Hai đường chéo là các đường phân giác của các góc của hình thoi.
Trong hình thoi có:
1. Tứ giác có bốn cạnh bằng nhau là hình thoi.
Dấu hiệu nhận biết:
2. Hình bình hành có hai cạnh kề bằng nhau là hình thoi.
3. Hình bình hành có hai đường chéo vuông góc với nhau là hình thoi.
4. Hình bình hành có một đường chéo là đường phân giác của một góc là hình thoi.
Hãy lập bản đồ tư duy bài
hình thoi?
HĐ nhóm
S
N
Kim Nam châm và la bàn
1.Bài vừa học :
2.Bài sắp học :
- Làm bài tập đầy đủ chuẩn bị tiết sau luyện tập
-Nắm vững định nghĩa , định lí , dấu hiệu nhận biết hình thoi ,chứng minh các định lí .
-Ôn lại tính chất , dấu hiệu nhận biết hành bình hành ,hình chữ nhật
-BTVN : 73 , 74 , 75 , 76 , 77(Sgk/105;106)
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Trần Thị Hồng Thanh
Dung lượng: |
Lượt tài: 1
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)