Chương I. §11. Hình thoi
Chia sẻ bởi Nguyễn Hồng Minh |
Ngày 03/05/2019 |
44
Chia sẻ tài liệu: Chương I. §11. Hình thoi thuộc Hình học 8
Nội dung tài liệu:
Dơn vị: Trường THCS TN AN
CHÀO MỪNG QUÍ THẦY CÔ ĐẾN DỰ GIỜ THĂM LỚP
Giáo viên thực hiện: Nguyễn Hồng Minh
Tứ giác ABCD là hình thoi
AB = BC = CD = DA
Các ví dụ trong hình có dạng là hình thoi
Bài 11: HÌNH THOI
1. Định nghĩa:
Tứ giác ABCD trên hình có gì đặc biệt?
Hình thoi
Hình thoi là tứ giác có bốn cạnh bằng nhau.
Có AB = BC = CD = DA
Tổng quát lên hình thoi là gì?
nên tứ giác ABCD được định nghĩa là hình thoi.
Cỏch: Dựng compa v thu?c th?ng
B1: Vẽ hai điểm A và C bất kỳ
B2: Dùng compa vẽ hai cung tròn có cùng bán kính R với tâm là A và C (R> 1/2AC) sao cho cắt nhau tại hai điểm ( B và D )
B3: Dùng thước thẳng nối 4 điểm lại. Ta được hình thoi ABCD
A
C
B
D
Cách vẽ hình thoi ABCD bất kì
R
Bài 11: HÌNH THOI
1. Định nghĩa:
Tứ giác ABCD trên hình có gì đặc biệt?
Hình thoi
Hình thoi là tứ giác có bốn cạnh bằng nhau.
Có AB = BC = CD = DA
Tổng quát lên hình thoi là gì?
nên tứ giác ABCD được định nghĩa là hình thoi.
Tứ giác ABCD là hình thoi
AB = BC = CD = DA
Hình thoi cũng là hình bình hành
Nhận xét:
Bài 11: HÌNH THOI
1. Định nghĩa:
Hình thoi là tứ giác có bốn cạnh bằng nhau.
Tứ giác ABCD là hình thoi
AB = BC = CD = DA
Nhận xét:
Hình thoi cũng là hình bình hành
2. Tính chất:
Hình thoi có tất cả các tính chất của hình bình hành
+ Các góc đối bằng nhau.
+ Các cạnh đối bằng nhau.
+ Hai đường chéo cắt nhau tại trung điểm mỗi đường.
?
Cho hình thoi ABCD, hai đường chéo cắt nhau tại O
a/ Theo t/c hình bình hành, hai đường chéo của hình thoi có tính chất gì?
b/ Hãy phát hiện thêm các tính chất khác của hai đường chéo AC và BD.
Như vậy ta có định lí về tính chất hai đường chéo của hình thoi.
Định lí
Trong hình thoi
a/ Hai đường chéo vuông góc với nhau
b/ Hai đường chéo là các đường phân giác của các góc của hình thoi.
Bài 11: HÌNH THOI
1. Định nghĩa:
Hình thoi là tứ giác có bốn cạnh bằng nhau.
Tứ giác ABCD là hình thoi
AB = BC = CD = DA
Nhận xét:
Hình thoi cũng là hình bình hành
2. Tính chất:
Hình thoi có tất cả các tính chất của hình bình hành
Định lí
Trong hình thoi:
a/ Hai đường chéo vuông góc với nhau
b/ Hai đường chéo là các đường phân giác của các góc của hình thoi.
KL
DB là đường phân giác của góc D.
CA là đường phân giác của góc C.
BD là đường phân giác của góc B.
b. AC l du?ng phõn giỏc c?a gúc A.
ABCD l hỡnh thoi cú AC c?t BD t?i 0.
Chứng minh:
Tam giác ABC có AB = BC (gt) nên cân tại B
Có OA = OC (t/c hình bình hành).
Suy ra: BO là trung tuyến, đồng thời là đường cao, là phân giác của tam giác cân ABC (t/c tam giác cân).
Do đó: BD AC và BD là phân giác của góc B
Cmtt: ta có AC là phân giác của góc A,
DB là phân giác của góc D, CA là phân giác của góc C.
Tứ giác
Hình thoi
T? gic cĩ thm di?u ki?n gì d? tr? thnh hình thoi?
Có 4 cạnh bằng nhau
A
B
D
C
Hình bình hnh ABCD cĩ thm di?u ki?n gì v? c?nh ho?c du?ng cho d? tr? thnh hình thoi?
B
C
A
D
A
C
D
B
A
C
D
B
Hình bình hành ABCD có AB = AD
ABCD là hình thoi.
Hình bình hành ABCD có AC BD
ABCD là hình thoi.
Hình bình hành ABCD có
ADB= CDB
ABCD là hình thoi
Tứ giác
Có 4 cạnh bằng nhau
Hình thoi
H.Bỡnh hnh
Có 2 cạnh kề bằng nhau
Có 2 đường chéo vuông góc
Có 1 đường chéo là đường phân giác của một góc
Tứ giác
Có 4 cạnh bằng nhau
3. Dấu hiệu nhận biết hình thoi
Bài 11: HÌNH THOI
1. Định nghĩa:
Hình thoi là tứ giác có bốn cạnh bằng nhau.
Tứ giác ABCD là hình thoi
AB = BC = CD = DA
Nhận xét:
Hình thoi cũng là hình bình hành
2. Tính chất:
Hình thoi có tất cả các tính chất của hình bình hành
Định lí
Trong hình thoi
a/ Hai đường chéo vuông góc với nhau
b/ Hai đường chéo là các đường phân giác của các góc của hình thoi.
KL
DB là đường phân giác của góc D.
CA là đường phân giác của góc C.
BD là đường phân giác của góc B.
b. AC l du?ng phõn giỏc c?a gúc A.
ABCD l hỡnh thoi cú AC c?t BD t?i 0.
3. Dấu hiệu nhận biết
3. Hình bình hành có hai đường chéo vuông góc là hình thoi.
2. Hình bình hành có hai cạnh kề bằng nhau là hình thoi.
1. Tứ giác có bốn cạnh bằng nhau là hình thoi.
4. Hình bình hành có một đường chéo là đường phân giác của một góc là hình thoi.
Chứng minh dấu hiệu nhận biết 3
Hình bình hành có hai đường chéo vuông góc với nhau là hình thoi
GT
KL
ABCD là hình bình hành
ABCD là hình thoi
Mà AB = DC, BC = AD (t/c hình bình hành)
Tam giác ABC có BO vừa là đường cao vừa là đường trung tuyến nên cân tại B.
Do đó: AB = BC
=>AB = BC = CD = DA
Vậy ABCD là hình thoi (định nghĩa).
CM:
Bài tập 73(sgk):Tìm các hình thoi ở hình sau:
Tứ giác ABCD có AB = BC = CD = DA (gt)
=> Tứ giác ABCD là hình thoi ( tứ giác có 4 cạnh bằng nhau)
Tứ giác EFGH có EF = GH, EH = GF (gt)
=> Tứ giác EFGH là hbh( vì có các cạnh đối bằng nhau)
=> Tứ giác EFGH là hình thoi (hbh có 1 đường chéo là phân giác).
Tứ giác IKMN có: OI = OM, OK = ON (gt)
=> Tứ giác IKMN là hbh ( Tứ giác có 2 đ/c cắt nhau tại trung điểm)
Mà IM KN (gt)
=> Hbh IKMN là hình thoi (hbh có 2 đường chéo vuông góc.)
Tứ giác PQRS không là hình thoi vì các cạnh không bằng nhau.
Vì A, B là tâm đường tròn nên: AC = AD = BC = BD = R
=> Tứ giác ADBC là hình thoi (tứ giác có bốn cạnh bằng nhau).
Hu?ng d?n v? nh:
H?c d/n, t/c, dhnb hỡnh thoi.
2. Lm bi t?p 73, 74, 75 trong SGK
Phiếu học tập
Họ và tên:………………….
Lớp 8/8
Tiết 20: Hình thoi
Bài ?3: Chứng minh dhnb thứ 3
GT
KL
..............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
Bài tập: Tìm hình thoi trên các hình sau:
CHÀO MỪNG QUÍ THẦY CÔ ĐẾN DỰ GIỜ THĂM LỚP
Giáo viên thực hiện: Nguyễn Hồng Minh
Tứ giác ABCD là hình thoi
AB = BC = CD = DA
Các ví dụ trong hình có dạng là hình thoi
Bài 11: HÌNH THOI
1. Định nghĩa:
Tứ giác ABCD trên hình có gì đặc biệt?
Hình thoi
Hình thoi là tứ giác có bốn cạnh bằng nhau.
Có AB = BC = CD = DA
Tổng quát lên hình thoi là gì?
nên tứ giác ABCD được định nghĩa là hình thoi.
Cỏch: Dựng compa v thu?c th?ng
B1: Vẽ hai điểm A và C bất kỳ
B2: Dùng compa vẽ hai cung tròn có cùng bán kính R với tâm là A và C (R> 1/2AC) sao cho cắt nhau tại hai điểm ( B và D )
B3: Dùng thước thẳng nối 4 điểm lại. Ta được hình thoi ABCD
A
C
B
D
Cách vẽ hình thoi ABCD bất kì
R
Bài 11: HÌNH THOI
1. Định nghĩa:
Tứ giác ABCD trên hình có gì đặc biệt?
Hình thoi
Hình thoi là tứ giác có bốn cạnh bằng nhau.
Có AB = BC = CD = DA
Tổng quát lên hình thoi là gì?
nên tứ giác ABCD được định nghĩa là hình thoi.
Tứ giác ABCD là hình thoi
AB = BC = CD = DA
Hình thoi cũng là hình bình hành
Nhận xét:
Bài 11: HÌNH THOI
1. Định nghĩa:
Hình thoi là tứ giác có bốn cạnh bằng nhau.
Tứ giác ABCD là hình thoi
AB = BC = CD = DA
Nhận xét:
Hình thoi cũng là hình bình hành
2. Tính chất:
Hình thoi có tất cả các tính chất của hình bình hành
+ Các góc đối bằng nhau.
+ Các cạnh đối bằng nhau.
+ Hai đường chéo cắt nhau tại trung điểm mỗi đường.
?
Cho hình thoi ABCD, hai đường chéo cắt nhau tại O
a/ Theo t/c hình bình hành, hai đường chéo của hình thoi có tính chất gì?
b/ Hãy phát hiện thêm các tính chất khác của hai đường chéo AC và BD.
Như vậy ta có định lí về tính chất hai đường chéo của hình thoi.
Định lí
Trong hình thoi
a/ Hai đường chéo vuông góc với nhau
b/ Hai đường chéo là các đường phân giác của các góc của hình thoi.
Bài 11: HÌNH THOI
1. Định nghĩa:
Hình thoi là tứ giác có bốn cạnh bằng nhau.
Tứ giác ABCD là hình thoi
AB = BC = CD = DA
Nhận xét:
Hình thoi cũng là hình bình hành
2. Tính chất:
Hình thoi có tất cả các tính chất của hình bình hành
Định lí
Trong hình thoi:
a/ Hai đường chéo vuông góc với nhau
b/ Hai đường chéo là các đường phân giác của các góc của hình thoi.
KL
DB là đường phân giác của góc D.
CA là đường phân giác của góc C.
BD là đường phân giác của góc B.
b. AC l du?ng phõn giỏc c?a gúc A.
ABCD l hỡnh thoi cú AC c?t BD t?i 0.
Chứng minh:
Tam giác ABC có AB = BC (gt) nên cân tại B
Có OA = OC (t/c hình bình hành).
Suy ra: BO là trung tuyến, đồng thời là đường cao, là phân giác của tam giác cân ABC (t/c tam giác cân).
Do đó: BD AC và BD là phân giác của góc B
Cmtt: ta có AC là phân giác của góc A,
DB là phân giác của góc D, CA là phân giác của góc C.
Tứ giác
Hình thoi
T? gic cĩ thm di?u ki?n gì d? tr? thnh hình thoi?
Có 4 cạnh bằng nhau
A
B
D
C
Hình bình hnh ABCD cĩ thm di?u ki?n gì v? c?nh ho?c du?ng cho d? tr? thnh hình thoi?
B
C
A
D
A
C
D
B
A
C
D
B
Hình bình hành ABCD có AB = AD
ABCD là hình thoi.
Hình bình hành ABCD có AC BD
ABCD là hình thoi.
Hình bình hành ABCD có
ADB= CDB
ABCD là hình thoi
Tứ giác
Có 4 cạnh bằng nhau
Hình thoi
H.Bỡnh hnh
Có 2 cạnh kề bằng nhau
Có 2 đường chéo vuông góc
Có 1 đường chéo là đường phân giác của một góc
Tứ giác
Có 4 cạnh bằng nhau
3. Dấu hiệu nhận biết hình thoi
Bài 11: HÌNH THOI
1. Định nghĩa:
Hình thoi là tứ giác có bốn cạnh bằng nhau.
Tứ giác ABCD là hình thoi
AB = BC = CD = DA
Nhận xét:
Hình thoi cũng là hình bình hành
2. Tính chất:
Hình thoi có tất cả các tính chất của hình bình hành
Định lí
Trong hình thoi
a/ Hai đường chéo vuông góc với nhau
b/ Hai đường chéo là các đường phân giác của các góc của hình thoi.
KL
DB là đường phân giác của góc D.
CA là đường phân giác của góc C.
BD là đường phân giác của góc B.
b. AC l du?ng phõn giỏc c?a gúc A.
ABCD l hỡnh thoi cú AC c?t BD t?i 0.
3. Dấu hiệu nhận biết
3. Hình bình hành có hai đường chéo vuông góc là hình thoi.
2. Hình bình hành có hai cạnh kề bằng nhau là hình thoi.
1. Tứ giác có bốn cạnh bằng nhau là hình thoi.
4. Hình bình hành có một đường chéo là đường phân giác của một góc là hình thoi.
Chứng minh dấu hiệu nhận biết 3
Hình bình hành có hai đường chéo vuông góc với nhau là hình thoi
GT
KL
ABCD là hình bình hành
ABCD là hình thoi
Mà AB = DC, BC = AD (t/c hình bình hành)
Tam giác ABC có BO vừa là đường cao vừa là đường trung tuyến nên cân tại B.
Do đó: AB = BC
=>AB = BC = CD = DA
Vậy ABCD là hình thoi (định nghĩa).
CM:
Bài tập 73(sgk):Tìm các hình thoi ở hình sau:
Tứ giác ABCD có AB = BC = CD = DA (gt)
=> Tứ giác ABCD là hình thoi ( tứ giác có 4 cạnh bằng nhau)
Tứ giác EFGH có EF = GH, EH = GF (gt)
=> Tứ giác EFGH là hbh( vì có các cạnh đối bằng nhau)
=> Tứ giác EFGH là hình thoi (hbh có 1 đường chéo là phân giác).
Tứ giác IKMN có: OI = OM, OK = ON (gt)
=> Tứ giác IKMN là hbh ( Tứ giác có 2 đ/c cắt nhau tại trung điểm)
Mà IM KN (gt)
=> Hbh IKMN là hình thoi (hbh có 2 đường chéo vuông góc.)
Tứ giác PQRS không là hình thoi vì các cạnh không bằng nhau.
Vì A, B là tâm đường tròn nên: AC = AD = BC = BD = R
=> Tứ giác ADBC là hình thoi (tứ giác có bốn cạnh bằng nhau).
Hu?ng d?n v? nh:
H?c d/n, t/c, dhnb hỡnh thoi.
2. Lm bi t?p 73, 74, 75 trong SGK
Phiếu học tập
Họ và tên:………………….
Lớp 8/8
Tiết 20: Hình thoi
Bài ?3: Chứng minh dhnb thứ 3
GT
KL
..............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
Bài tập: Tìm hình thoi trên các hình sau:
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Nguyễn Hồng Minh
Dung lượng: |
Lượt tài: 1
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)