Chương I. §1. Tứ giác

Chia sẻ bởi Phạm Duy Hiển | Ngày 04/05/2019 | 49

Chia sẻ tài liệu: Chương I. §1. Tứ giác thuộc Hình học 8

Nội dung tài liệu:

Phạm Duy Hiển - Trường THCS Lạc Long Quân
Trang bìa
Trang bìa:
kiểm tra bài cũ
Học sinh 1:
Ghép các giá trị cho ở cột bên phải phù hợp với các hình trên
x =
y =
z =


Học sinh 2:
Trong hình dưới đây biết a // b ; c // d . Tìm x,y,z,t Giải Giải Vì c// d nên latex(70^0 x = 180^0) Vậy x = latex(110^0) và latex(130^0 y = 180^0) Vậy y = latex(50^0) Vì a// b mà latex(CD _|_ b nên CD _|_ a) Vậy z = latex(90^0) và latex(60^0 t = 180^0) Vậy t = latex(120^0) Định nghĩa
Tứ giác :
Trong các hình 1a,1b,1c gọi là hình tứ giác , hình 2 không phải là tứ giác . Trong các tứ giác trên các đoạn thẳng AB,BC,CD,DA có đặc điểm gì ? Em hãy nêu định nghĩa tứ giác ABCD ? Tứ giác ABCD là hình gồm các đoạn thẳng AB,BC,CD,DA , trong đó bất kì hai đoạn thẳng nào cũng không cùng nằm trên một đường thẳng . Tứ giác ABCD có các điểm A,B,C,D gọi là đỉnh , các đoạn thẳng AB,BC,CD,DA gọi là cạnh Tứ giác lồi:
Trong các tứ giác trên , tứ giác nào luôn nằm trong nửa mặt phẳng có bờ là đường thẳng chứa bất kì một cạnh của tứ giác ? Tứ giác lồi là tứ giác luôn nằm trong một nửa mặt phẳng có bờ là đường thẳng chứa bất kì cạnh nào của tứ giác Chú ý : Các tứ giác từ nay không nói gì thêm ta hiểu đó là tứ giác lồi . Bài tập :
Xem hình bên để chọn các cụm từ thích hợp điền vào chỗ trống
a) Hai đỉnh kề nhau : A và B ; ||B và C|| ; ||C và D|| Hai đỉnh đối nhau : A và C ; ||B và D|| b) Đường chéo ( đoạn thẳng nối hai đỉnh đối nhau) : ||AC|| ; ||BD|| c) Hai cạnh kề nhau : AB và CD ; ||BC và CD|| ; ||DA và AB|| Hai cạnh đối nhau : AB và CD ; ||AD và BC|| d) Góc : latex(angle(A)) ,||latex(angle(B))|| , ||latex(angle(C))|| , ||latex(angle(D))|| Hai góc đối nhau : latex(angle(A)) và latex(angle(C)); ||latex(angle(B)) và latex(angle(D))|| e) Điểm nằm trong tứ giác ( điểm trong của tứ giác) : M , ||P|| , ||H|| Điểm nằm ngoài tứ giác ( điểm ngoài của tứ giác) : N , ||Q|| Tổng các góc của một tứ giác
Đo các góc của tứ giác ABCD:
Hãy đo các góc của tứ giác ABCD ? Tính tổng các góc của tứ giác ? Không dùng thước đo góc , làm thể nào để chứng minh được tính chất này ? Định lí:
Tổng các góc của một tứ giác bằng latex(360^0) Chứng minh Nối A với C 1 2 2 1 Trong latex(Delta ABC) có latex(angle(A_1) angle(B) angle(C_2) = 180^0) Trong latex(Delta ADC) có latex(angle(A_2) angle(D) angle(C_1) = 180^0) mà latex(angle(A) angle(B) angle(C) angle(D) =(angle(A_1) angle(A_2)) angle(B) (angle(C_1) angle(C_2)) angle(D)) = latex((angle(A_1) angle(B) angle(C_2)) (angle(A_2) angle(D) angle(C_1) =180^0 180^0 = 360^0 Vậy latex(angle(A) angle(B) angle(C) angle(D) = 360^0) Bài tập vận dụng
Bài tập 1: Trắc nghiệm ghép đôi
Ghép các giá trị cho ở cột bên phải phù hợp các hình trên
x =
y =
z =
t =


Bài tập 2:
Bài 4(SGK) : Vẽ tứ giác ABCD biết AB =AC = 3 cm ; BC = 3,5 cm ; CD = 2 cm ; AD = 1,5 cm Cách vẽ : - Vẽ đoạn thẳng BC = 3,5 cm - Vẽ cung tròn tâm A bán kính 3 cm - Vẽ cung tròn tâm C bán kính 3 cm . Vẽ điểm A giao điểm của hai cung tròn - Vẽ các đoạn thẳng AB,AC - Vẽ cung tròn tâm A bán kính 1,5 cm - Vẽ cung tròn tâm C bán kính 2 cm . Vẽ điểm D là giao điểm của hai cung tròn . - Vẽ đoạn thẳng AD , DC . Bài tập 3:
Bài 5 : Tìm vị trí của kho báu . Biết kho báu là giao điểm của hai đường chéo của tứ giác ABCD , các đỉnh có tọa độ như sau ( hình vẽ) Giải Vẽ đường chéo AC và BD cắt nhau tại O . O(5;6) Tọa độ của điểm O là (5;6) Hướng dẫn về nhà:
- Học định nghĩa tứ giác - Học định lí về tổng các góc trong tứ giác - Làm các bài tập 1,2,3 trang 66,67 của SGK - Xem trước nội dung bài hình thang
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Phạm Duy Hiển
Dung lượng: | Lượt tài: 1
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)