Cần Thơ
Chia sẻ bởi Nguyễn Văn Giảng |
Ngày 16/10/2018 |
61
Chia sẻ tài liệu: Cần Thơ thuộc Địa lí 6
Nội dung tài liệu:
SỞ GIÁO DỤC VÀ ĐÀO TẠO
THÀNH PHỐ CẦN THƠ
ĐỀ CHÍNH THỨC
KỲ THI TUYỂN SINH LỚP 10 THPT
NĂM HỌC 2012-2013
Khóa ngày:21/6/2012
MÔN: TOÁN
Thời gian làm bài: 120 phút (không kể thời gian phát đề)
Câu 1: (2,0 điểm)
Giải hệ phương trình , các phương trình sau đây:
1.
2.
3.
4.
Câu 2: (1,5 điểm)
Cho biểu thức: (với )
1. Rút gọn biểu thức K.
2. Tìm a để .
Câu 3: (1,5 điểm)
Cho phương trình (ẩn số x): .
1. Chứng minh phương trình (*) luôn có hai nghiệm phân biệt với mọi m.
2. Tìm giá trị của m để phương trình (*) có hai nghiệm thỏa .
Câu 4: (1,5 điểm)
Một ô tô dự định đi từ A đến B cách nhau 120 km trong một thời gian quy định. Sau khi đi được 1 giờ thì ô tô bị chặn bởi xe cứu hỏa 10 phút. Do đó để đến B đúng hạn xe phải tăng vận tốc thêm 6 km/h. Tính vận tốc lúc đầu của ô tô.
Câu 5: (3,5 điểm)
Cho đường tròn , từ điểm ở ngoài đường tròn vẽ hai tiếp tuyến và(là các tiếp điểm). cắttại E.
1. Chứng minh tứ giác nội tiếp.
2. Chứng minh vuông góc với và .
3. Gọilà trung điểm của , đường thẳng quavà vuông góc cắt các tia theo thứ tự tại và . Chứng minh và cân tại .
4. Chứng minh là trung điểm của.
-------HẾT-------
Thí sinh không được sử dụng tài liệu. Giám thị coi thi không giải thích gì thêm.
Họ và tên thí sinh: .............................................. Số báo danh: ...........................
Chữ kí của giám thị 1: ....................................... Chữ kí của giám thị 2: ..............................
Giải
Câu 1: (2,0 điểm)
Giải hệ phương trình , các phương trình sau đây:
1.
2.
3.
4.
Câu 2: (1,5 điểm)
Cho biểu thức: (với )
.<=> =
( a = 503 (TMĐK)
Câu 3: (1,5 điểm)
Cho phương trình (ẩn số x):.
1.
Vậy (*) luôn có hai nghiệm phân biệt với mọi m.
2. Tìm giá trị của m để phương trình (*) có hai nghiệm thỏa .
Theo hệ thức VI-ET có :x1.x2 = - m2 + 3 ;x1+ x2 = 4; mà => x1 = - 1 ; x2 = 5
Thay x1 = - 1 ; x2 = 5 vào x1.x2 = - m2 + 3 => m =
Câu 4: (1,5 điểm)
Gọi x (km/h) là vt dự định; x > 0 => Thời gian dự định :
Sau 1 h ô tô đi được x km => quãng đường còn lại 120 – x ( km)
Vt lúc sau: x + 6 ( km/h)
Pt => x = 48 (TMĐK) => KL
Câu 5:
Câu a:
Theo tính chất tiếp tuyến, ta có:
+ AB ( OB, (
+ AC ( O, (
Xét tứ giác ABOC có:
+
( Tứ giác ABOC nội tiếp .
Câu b: vuông góc với và
Theo tính chất 2 tiếp tuyến cắt nhau tại A, ta có:
AB = AC
Mà OB = OC ( cùng bán kính)
( AO là đường trung trực của BC
( AO ( BC
Xét (BEA() và (OEB ()có:
( cùng phụ )
( (BEA ( (OEB (g,g)
(
Hay:
Câu c:
Tam giác BOC cân tại O => góc OBC = góc OCB
Tứ giác OIBD có góc OID = góc OBD = 900 nên OIBD nội tiếp => góc ODI = góc OBI
Do đó
Lại có FIOC nội tiếp ; nên góc IFO = góc ICO
Suy ra góc OPF = góc OFP ; vậy cân tại .
Câu d:
Xét tứ giác BDEF có :
IB = IE (gt)
ID = IF ( Tam giác OPD cân có OI là đường cao => cũng là đường trung tuyến)
Nên BPEF là Hình bình hành
BD
THÀNH PHỐ CẦN THƠ
ĐỀ CHÍNH THỨC
KỲ THI TUYỂN SINH LỚP 10 THPT
NĂM HỌC 2012-2013
Khóa ngày:21/6/2012
MÔN: TOÁN
Thời gian làm bài: 120 phút (không kể thời gian phát đề)
Câu 1: (2,0 điểm)
Giải hệ phương trình , các phương trình sau đây:
1.
2.
3.
4.
Câu 2: (1,5 điểm)
Cho biểu thức: (với )
1. Rút gọn biểu thức K.
2. Tìm a để .
Câu 3: (1,5 điểm)
Cho phương trình (ẩn số x): .
1. Chứng minh phương trình (*) luôn có hai nghiệm phân biệt với mọi m.
2. Tìm giá trị của m để phương trình (*) có hai nghiệm thỏa .
Câu 4: (1,5 điểm)
Một ô tô dự định đi từ A đến B cách nhau 120 km trong một thời gian quy định. Sau khi đi được 1 giờ thì ô tô bị chặn bởi xe cứu hỏa 10 phút. Do đó để đến B đúng hạn xe phải tăng vận tốc thêm 6 km/h. Tính vận tốc lúc đầu của ô tô.
Câu 5: (3,5 điểm)
Cho đường tròn , từ điểm ở ngoài đường tròn vẽ hai tiếp tuyến và(là các tiếp điểm). cắttại E.
1. Chứng minh tứ giác nội tiếp.
2. Chứng minh vuông góc với và .
3. Gọilà trung điểm của , đường thẳng quavà vuông góc cắt các tia theo thứ tự tại và . Chứng minh và cân tại .
4. Chứng minh là trung điểm của.
-------HẾT-------
Thí sinh không được sử dụng tài liệu. Giám thị coi thi không giải thích gì thêm.
Họ và tên thí sinh: .............................................. Số báo danh: ...........................
Chữ kí của giám thị 1: ....................................... Chữ kí của giám thị 2: ..............................
Giải
Câu 1: (2,0 điểm)
Giải hệ phương trình , các phương trình sau đây:
1.
2.
3.
4.
Câu 2: (1,5 điểm)
Cho biểu thức: (với )
.<=> =
( a = 503 (TMĐK)
Câu 3: (1,5 điểm)
Cho phương trình (ẩn số x):.
1.
Vậy (*) luôn có hai nghiệm phân biệt với mọi m.
2. Tìm giá trị của m để phương trình (*) có hai nghiệm thỏa .
Theo hệ thức VI-ET có :x1.x2 = - m2 + 3 ;x1+ x2 = 4; mà => x1 = - 1 ; x2 = 5
Thay x1 = - 1 ; x2 = 5 vào x1.x2 = - m2 + 3 => m =
Câu 4: (1,5 điểm)
Gọi x (km/h) là vt dự định; x > 0 => Thời gian dự định :
Sau 1 h ô tô đi được x km => quãng đường còn lại 120 – x ( km)
Vt lúc sau: x + 6 ( km/h)
Pt => x = 48 (TMĐK) => KL
Câu 5:
Câu a:
Theo tính chất tiếp tuyến, ta có:
+ AB ( OB, (
+ AC ( O, (
Xét tứ giác ABOC có:
+
( Tứ giác ABOC nội tiếp .
Câu b: vuông góc với và
Theo tính chất 2 tiếp tuyến cắt nhau tại A, ta có:
AB = AC
Mà OB = OC ( cùng bán kính)
( AO là đường trung trực của BC
( AO ( BC
Xét (BEA() và (OEB ()có:
( cùng phụ )
( (BEA ( (OEB (g,g)
(
Hay:
Câu c:
Tam giác BOC cân tại O => góc OBC = góc OCB
Tứ giác OIBD có góc OID = góc OBD = 900 nên OIBD nội tiếp => góc ODI = góc OBI
Do đó
Lại có FIOC nội tiếp ; nên góc IFO = góc ICO
Suy ra góc OPF = góc OFP ; vậy cân tại .
Câu d:
Xét tứ giác BDEF có :
IB = IE (gt)
ID = IF ( Tam giác OPD cân có OI là đường cao => cũng là đường trung tuyến)
Nên BPEF là Hình bình hành
BD
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Nguyễn Văn Giảng
Dung lượng: 181,50KB|
Lượt tài: 5
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)