Cac thay co giup em giap voi a
Chia sẻ bởi Lê Hoàng Tuấn Anh |
Ngày 13/10/2018 |
49
Chia sẻ tài liệu: cac thay co giup em giap voi a thuộc Hình học 8
Nội dung tài liệu:
Các bài Toán cực trị trong các kì thi HSG Toán 9
A. Bài tập.
Bài 1. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức:
A = với
(Đề thi chọn HSG Toán 9, tỉnh Khánh Hoà năm học 1987 – 1988)
Bài 2. Cho P Hãy tìm giá trị nguyên dương của x, y, z để cho P đạt giá trị dương nhỏ nhất.
(Đề thi chọn HSG Toán 9, toàn quốc năm học 1988 – 1989)
Bài 3. Cho A Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức A và các giá trị tương ứng của x.
(Đề thi chọn HSG Toán 9, TP. HCM năm học 1989 – 1990)
Bài 4. Cho hàm số Tìm giá trị nhỏ nhất của y và các giá trị tương ứng của x.
(Đề thi chọn HSG Toán 9, TP. HCM năm học 1990 – 1991)
Bài 5. Cho M Tìm giá trị nhỏ nhất của M và các giá trị tương ứng của x.
(Đề thi chọn HSG Toán 9, TP. HCM năm học 1991 – 1992)
Bài 6. Tìm giá trị nguyên lớn nhất của m sao cho bất đẳng thức sau đây luôn luôn đúng với mọi số thực x:
A =
(Đề thi chọn HSG Toán 9, TP. HCM năm học 1992 – 1993)
Bài 7. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số y
(Đề thi chọn HSG Toán 9, Quận 6, TP. HCM năm học 1992 – 1993)
Bài 8. Tìm giá trị lớn nhất và giá trị nhỏ nhất của y với
(Đề thi chọn HSG Toán 9, TP. HCM năm học 1992 – 1993)
Bài 9. Cho ba số dương x, y, z thoả mãn điều kiện: Tìm giá trị lớn nhất của xyz.
(Đề thi chọn HSG Toán 9, TP. HCM năm học 1992 – 1993)
Bài 10. a) Tìm giá trị nhỏ nhất của hàm số y
b) Tìm giá trị lớn nhất của hàm số: y =
(Đề thi chọn HSG Toán 9, tỉnh Thừa Thiên Huế năm học 1994 – 1995)
Bài 11. Cho ba số dương x, y, z thoả mãn điều kiện: Tìm giá trị nhỏ nhất của biểu thức: P = 2x + 3y – 4z.
(Đề thi chọn HSG Toán 9, Quận 1, TP. HCM năm học 1994 – 1995)
Bài 12. Tìm giá trị lớn nhất và giá trị nhỏ nhất của khi có
(Đề thi chọn HSG Toán 9, TP. HCM năm học 1995 – 1996)
Bài 13. Cho ba số dương a, b, c có tổng là một hằng số. Tìm a, b, c sao cho: ab + bc + ca lớn nhất.
(Đề thi chọn HSG Toán 9, Quận 1, TP. HCM năm học 1995 – 1996)
Bài 14. Cho biểu thức Q trong đó là các biến số dương và thoả mãn điều kiện Tìm giá trị lớn nhất của Q và giá trị tương ứng các biến của nó.
(Đề thi chọn HSG Toán 9, Toàn quốcnăm học 1996 – 1997)
Bài 15. Cho x, y > 0 thoả mãn điều kiện x.y = 1. Tìm giá trị nhỏ nhất của biểu thức
(Đề thi HSG Toán 9, Trường THCS Colette, Quận 3, TP. HCM năm học 1996 – 1997)
Bài 16. Cho các số thực không âm có tổng bằng 1. Tìm giá trị lớn nhất của biểu thức: A
(Đề thi chọn HSG Toán 9, TP. HCM năm học 1996 – 1997)
Bài 17. Cho a, b > 0. Tìm giá trị nhỏ nhất
A. Bài tập.
Bài 1. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức:
A = với
(Đề thi chọn HSG Toán 9, tỉnh Khánh Hoà năm học 1987 – 1988)
Bài 2. Cho P Hãy tìm giá trị nguyên dương của x, y, z để cho P đạt giá trị dương nhỏ nhất.
(Đề thi chọn HSG Toán 9, toàn quốc năm học 1988 – 1989)
Bài 3. Cho A Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức A và các giá trị tương ứng của x.
(Đề thi chọn HSG Toán 9, TP. HCM năm học 1989 – 1990)
Bài 4. Cho hàm số Tìm giá trị nhỏ nhất của y và các giá trị tương ứng của x.
(Đề thi chọn HSG Toán 9, TP. HCM năm học 1990 – 1991)
Bài 5. Cho M Tìm giá trị nhỏ nhất của M và các giá trị tương ứng của x.
(Đề thi chọn HSG Toán 9, TP. HCM năm học 1991 – 1992)
Bài 6. Tìm giá trị nguyên lớn nhất của m sao cho bất đẳng thức sau đây luôn luôn đúng với mọi số thực x:
A =
(Đề thi chọn HSG Toán 9, TP. HCM năm học 1992 – 1993)
Bài 7. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số y
(Đề thi chọn HSG Toán 9, Quận 6, TP. HCM năm học 1992 – 1993)
Bài 8. Tìm giá trị lớn nhất và giá trị nhỏ nhất của y với
(Đề thi chọn HSG Toán 9, TP. HCM năm học 1992 – 1993)
Bài 9. Cho ba số dương x, y, z thoả mãn điều kiện: Tìm giá trị lớn nhất của xyz.
(Đề thi chọn HSG Toán 9, TP. HCM năm học 1992 – 1993)
Bài 10. a) Tìm giá trị nhỏ nhất của hàm số y
b) Tìm giá trị lớn nhất của hàm số: y =
(Đề thi chọn HSG Toán 9, tỉnh Thừa Thiên Huế năm học 1994 – 1995)
Bài 11. Cho ba số dương x, y, z thoả mãn điều kiện: Tìm giá trị nhỏ nhất của biểu thức: P = 2x + 3y – 4z.
(Đề thi chọn HSG Toán 9, Quận 1, TP. HCM năm học 1994 – 1995)
Bài 12. Tìm giá trị lớn nhất và giá trị nhỏ nhất của khi có
(Đề thi chọn HSG Toán 9, TP. HCM năm học 1995 – 1996)
Bài 13. Cho ba số dương a, b, c có tổng là một hằng số. Tìm a, b, c sao cho: ab + bc + ca lớn nhất.
(Đề thi chọn HSG Toán 9, Quận 1, TP. HCM năm học 1995 – 1996)
Bài 14. Cho biểu thức Q trong đó là các biến số dương và thoả mãn điều kiện Tìm giá trị lớn nhất của Q và giá trị tương ứng các biến của nó.
(Đề thi chọn HSG Toán 9, Toàn quốcnăm học 1996 – 1997)
Bài 15. Cho x, y > 0 thoả mãn điều kiện x.y = 1. Tìm giá trị nhỏ nhất của biểu thức
(Đề thi HSG Toán 9, Trường THCS Colette, Quận 3, TP. HCM năm học 1996 – 1997)
Bài 16. Cho các số thực không âm có tổng bằng 1. Tìm giá trị lớn nhất của biểu thức: A
(Đề thi chọn HSG Toán 9, TP. HCM năm học 1996 – 1997)
Bài 17. Cho a, b > 0. Tìm giá trị nhỏ nhất
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Lê Hoàng Tuấn Anh
Dung lượng: 197,50KB|
Lượt tài: 1
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)