Các dạng toán thi HKII- dai so (cực hay)

Chia sẻ bởi Vũ Mộng Kha | Ngày 13/10/2018 | 36

Chia sẻ tài liệu: các dạng toán thi HKII- dai so (cực hay) thuộc Đại số 9

Nội dung tài liệu:

OÂN TAÄP TOAÙN HKII TOAÙN 9
A. PHAÀN ÑAÏI SOÁ
Baøi 1 : Cho (P): y = ax2 .Haõy xaùc ñònh heä soá a , bieát (P) ñi qua ñieåm M(2;-2) vaø veõ (P) vôùi a vöøa tìm ñöôïc.
Baøi 2 : Cho (P) : y = ax2 .
a. Tìm a bieát (P) ñi qua M(2;-1)
b. Veõ (P) vôùi a vöøa tìm ñöôïc.
Baøi 3 : Cho haøm soá y =(m-2)x + n (1), trong ñoù m,n laø caùc tham soá
a. Xaùc ñònh m ñeå haøm soá ñoàng bieán , nghòch bieán.
b. Tìm m, n ñeå ñöôøng thaúng (1) ñi qua 2 ñieåm A(1;-2) ; B(3;-4).
c. Tìm m, n ñeå ñöôøng thaúng (1) caét truïc tung taïi ñieåm M coù tung ñoä y = 1 - vaø caét truïc hoaønh taïi ñieåm coù hoaønh ñoä x = 2 + .
d. Tìm m, n ñeå ñöôøng thaúng (1)
Vuoâng goùc vôùi ñöôøng thaúng coù phöông trình x – 2y = 3.
Song song vôùi ñöôøng thaúng coù phöông trình 3x + 2y = 1.
Truøng vôùi ñöôøng thaúng coù phöông trình y – 2x + 3 = 0.
Baøi 4 : Xaùc ñònh a vaø b ñeå heä phöông trình :
Coù nghieäm laø x=  vaø y = 
Baøi 5 : Cho hai ñöôøng thaúng coù phöông trình :mx – (n+1)y -1 = 0(d) vaø nx+ 2my+ 2= 0(d’) .Xaùc ñònh caùc giaù trò cuûa m vaø n sao cho (d) vaø (d‘) caét nhau taïi ñieåm P(-1;3).
Baøi 6 : Giaûi heä phöông trình sau :
a. b. c. 
Baøi 7 : Giaûi caùc phöông trình sau :
a. 3x2 – 6x = 0 b. 9x4 + 8x2 – 1 = 0
c. x4 – x2 – 12 = 0 d. x4 – 6x2 + 8 = 0
e. 4x4 – 5x2 – 9 = 0 f. x2 – (2 + ) + 2 = 0
g. x2 –mx + m -1 = 0 h. 
Baøi 8 : Tìm hai soá bieát toång cuûa chuùng baèng 28 vaø toång caùc bình phöông chuùng baèng 400.
Baøi 9 : Chieàu daøi mieáng ñaát hình chöõ nhaät hôn chieàu roäng 10m. Dieän tích laø 375m2.Tính chu vi mieáng ñaát ñoù.
Baøi 10 : Hình chöõ nhaät coù chieàu daøi hôn chieàu roäng 12m. Tìm chu vi mieáng ñaát bieát dieän tích hình chöõ nhaät baèng 405m2.
Baøi 11 : Cho phöông trình baän hai : x2 – 2(m+1)+ m + 4= 0 (1)
a. Giaûi phöông trình (1) khi m = 1 .
b. Chöùng minh raèng phöông trình (1) luoân coù hai nghieäm phaân bieät vôùi moïi giaù trò cuûa m.
Baøi 12 : Cho phöông trình x2 – mx + m -1 = 0 coù aàn x (m laø tham soá)
a. Giaûi phöông trình khi m = -2.
b. Chöùng toû phöông trình treân coù nghieäm x1,x2 vôùi moïi m.
c. Tìm m ñeå x12x2 + x1x22 = 2
Baøi 13 : Cho phöông trình : 4x2 + 17x - 9 = 0.
a. Chöùng minh raèng phöông trình luoân coù hai nghieäm phaân bieät
b. Khoâng giaûi phöông trình , haõy tính toång bình phöông cuûa hai nghieäm.
Baøi 14 : xaùc ñònh m ñeå phöông trình x2 + 2x + m = 0 coù hai nghieäm thoûa ñieàu kieän :
3x1 + 2x2 = 1.
Baøi 15 : Cho phöông trình aån x : x2 – 2mx + 6m – 9 = 0.
a. Chöùng minh raèng phöông trình luoân coù nghieäm vôùi moïi giaù trò cuûa m.
b. Tính toång vaø tích cuûa hai nghieäm theo m.
c. Goïi x1 vaø x2 laø hai nghieäm cuûa phöông trình.Tính caùc giaù trò cuûa m ñeå x12+ x22=18.
Baøi 16 : Cho phöông trình : x2 + (m + 2)x + m + 1 = 0 (1) (m laø tham soá)
a. Chöùng toû phöông trình (1) luoân coù nghieäm vôùi moïi m.
b. Goïi x1, x2 laø nghieäm cuûa phöông trình (1) .Tìm giaù trò nhoû nhaát cuûa toång bình phöông hai nghieäm.
Baøi 17 : Cho phöông trình baäc hai aån x vaø tham soá m bieát :
x2 – 2x + m + 1 = 0
a. Tìm m sao cho phöông trình coù moät nghieäm laø -1
b. Tính A = (x1 + x2)2 + 3x1.x2 vôùi m vöøa tìm ñöôïc.
Baøi 18 : Khoâng giaûi phöông trình, duøng heä thöùc Viet ñeå tính toång vaø tích caùc nghieäm cuûa phöông trình : 5x2 + x + 2 = 0.
Baøi 19 : Cho phöông trình x2 – 3x + 1 = 0 (1)
a. Chöùng minh raèng phöông trình coù hai nghieäm phaân bieät .
b. Tính x12 + x22 vaø .
Baøi 20 : Cho phöông trình x2 + (m-2)x – m = 0.
a. Chöùng minh raèng phöông trình luoân coù nghieäm vôùi moïi giaù trò cuûa m.
b. Tìm m ñeå phöông trình coù hai nghieäm x1 , x2 thoûa maõn x1 – x2 = -2.
c. Tìm m ñeå phöông trình coù hai nghieäm döông phaân bieät.
Baøi 21 : Cho phöông trình x2 + 2x -2m +1 = 0 .
a. Bieát nghieäm thöù nhaát x1 = 1 . tìm nghieäm coøn laïi.
b. Ñònh m ñeå phöông trình coù 2 nghieäm phaân bieät .Goïi x1,x2 laø hai nghieäm cuûa phöông trình haõy tính A = x1 + x2 + 4x1x2.
Baøi 22 : Moät toå saûn xuaát coù keá hoaïch saûn xuaát 720 saûn phaåm theo naêng suatá döï kieán.Neáu taêng naêng suaát 10 saûn phaåm moãi ngaøy thì hoaøn thaønh sôùm hôn 4 ngaøy so vôùi giaûm naêng suaát 20 saûn phaåm moãi ngaøy .Tính naêng suaát döï kieán theo keá hoaïch.
Baøi 23 : Moät Cano chaïy treân soâng , xuoâi doøng 120km vaø ngöôïc doøng 120km , thôøi gian caû ñi laãn veà heát 11 giôø .Tính vaän toác rieâng cuûa moãi Cano , bieát vaän toác doøng nöôùc laø 2km/h.
Baøi 24 : Trong moät buoåi lao ñoäng troàng caây , 15 hoïc sinh Nam vaø Nöõ troàng ñöôïc 180 caây. Bieát raèng soá caây caùc baïn Nam troàng baèng soá caây caùc baïn Nöõ troàng vaø moãi baïn Nam ñaõ troàng nhieàu hôn moãi baïn Nöõ 5 caây.Tình soá hoïc sinh Nam vaø soá hoïc sinh Nöõ.
Baøi 25 : Baïn An ñi xe ñaïp töø A ñeán B daøi 45Km. Khi töø B trôû veà A , An ñi theo ñöôøng khaùc daøi hôn ñöôøng cuõ 9 km. Vì luùc veà vaän toác cuûa An taêng hôn luùc ñi laø 3km/h neân thôøi gian veà ít hôn thôøi gian ñi laø 30 phuùt. Tính vaän toác cuûa An.

* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Vũ Mộng Kha
Dung lượng: 49,50KB| Lượt tài: 0
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)