Các chuyên đề ôn thi lớp 10 gần đủ
Chia sẻ bởi Phạm Tuyên |
Ngày 13/10/2018 |
52
Chia sẻ tài liệu: các chuyên đề ôn thi lớp 10 gần đủ thuộc Đại số 9
Nội dung tài liệu:
Dạng I:
rút gọn biểu thức
Có chứa căn thức bậc hai
Bài 1: Thực hiện phép tính:
1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)
14)
15)
16)
17)
18)
19)
20) Bài 2: Cho biểu thức
Rút gọn biểu thức A;
Tìm giá trị của x để A > - 6.
Bài 3: Cho biểu thức
Rút gọn biểu thức B;
Tìm giá trị của x để A > 0.
Bài 4: Cho biểu thức
Rút gọn biểu thức C;
Tìm giá trị của x để C < 1.
Bài 5: Rút gọn biểu thức :
a)
b)
c)
d)
Bài 6: Cho biểu thức
Rút gọn biểu thức M;
So sánh M với 1.
Bài 7: Cho các biểu thức và
Rút gọn biểu thức P và Q;
Tìm giá trị của x để P = Q.
Bài 8: Cho biểu thức
Rút gọn biểu thức P
So sánh P với 5.
Với mọi giá trị của x làm P có nghĩa, chứng minh biểu thức chỉ nhận đúng một giá trị nguyên.
Bài 9: Cho biểu thức
Tìm điều kiện để P có nghĩa, rút gọn biểu thức P;
Tìm các số tự nhiên x để là số tự nhiên;
Tính giá trị của P với x = 4 – 2
Bài 10: Cho biểu thức :
Rút gọn biểu thức P;
Tìm x để
Dạng II
CÁC BÀI TOÁN VỀ HÀM SỐ VÀ ĐỒ THỊ
I.Điểm thuộc đường – đường đi qua điểm.
Điểm A(xA; yA) thuộc đồ thị hàm số y = f(x) yA = f(xA).
Ví dụ 1: Tìm hệ số a của hàm số: y = ax2 biết đồ thị hàm số của nó đi qua điểm A(2;4).
Giải:
Do đồ thị hàm số đi qua điểm A(2;4) nên: 4= a.22 a = 1
Ví dụ 2: Trong mặt phẳng tọa độ cho A(-2;2) và đường thẳng (d) có phương trình: y = -2(x + 1). Đường thẳng (d) có đi qua A không?
Giải:
Ta thấy -2.(-2 + 1) = 2 nên điểm A thuộc v ào đường thẳng (d)
II.Cách tìm giao điểm của hai đường y = f(x) và y = g(x).
Bước 1: Tìm hoành độ giao điểm là nghiệm của phương trình f(x) = g(x) (II)
Bước 2: Lấy nghiệm đó thay vào 1 trong hai công thức y = f(x) hoặc y = g(x) để tìm tung độ giao điểm.
Chú ý: Số nghiệm của phương trình (II) là số giao điểm của hai đường trên.
III.Quan hệ giữa hai đường thẳng.
Xét hai đường thẳng : (d1) : y = a1x + b1.
(d2) : y = a2x + b2.
(d1) cắt (d2) a1 a2.
d1) // (d2)
d1) (d2)
(d1) (d2) a1 a2 = -1
IV.Tìm điều kiện để 3 đường thẳng đồng qui.
Bước 1: Giải hệ phương trình gồm hai đường thẳng không chứa tham số để tìm (x;y).
Bước 2: Thay (x;y) vừa tìm được vào phương trình còn lại để tìm ra tham số .
V.Quan hệ giữa (d): y = ax + b và (P): y = cx2 (c0).
1.Tìm tọa độ giao điểm của (d) và (P).
Bước 1: Tìm hoành độ giao điểm là nghiệm của phương trình:
cx2= ax + b (V)
Bước 2: Lấy nghiệm đó thay vào 1 trong hai công thức y = ax +b hoặc y = cx2 để tìm tung độ giao điểm.
Chú ý: Số nghiệm của phương trình (V) là
rút gọn biểu thức
Có chứa căn thức bậc hai
Bài 1: Thực hiện phép tính:
1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)
14)
15)
16)
17)
18)
19)
20) Bài 2: Cho biểu thức
Rút gọn biểu thức A;
Tìm giá trị của x để A > - 6.
Bài 3: Cho biểu thức
Rút gọn biểu thức B;
Tìm giá trị của x để A > 0.
Bài 4: Cho biểu thức
Rút gọn biểu thức C;
Tìm giá trị của x để C < 1.
Bài 5: Rút gọn biểu thức :
a)
b)
c)
d)
Bài 6: Cho biểu thức
Rút gọn biểu thức M;
So sánh M với 1.
Bài 7: Cho các biểu thức và
Rút gọn biểu thức P và Q;
Tìm giá trị của x để P = Q.
Bài 8: Cho biểu thức
Rút gọn biểu thức P
So sánh P với 5.
Với mọi giá trị của x làm P có nghĩa, chứng minh biểu thức chỉ nhận đúng một giá trị nguyên.
Bài 9: Cho biểu thức
Tìm điều kiện để P có nghĩa, rút gọn biểu thức P;
Tìm các số tự nhiên x để là số tự nhiên;
Tính giá trị của P với x = 4 – 2
Bài 10: Cho biểu thức :
Rút gọn biểu thức P;
Tìm x để
Dạng II
CÁC BÀI TOÁN VỀ HÀM SỐ VÀ ĐỒ THỊ
I.Điểm thuộc đường – đường đi qua điểm.
Điểm A(xA; yA) thuộc đồ thị hàm số y = f(x) yA = f(xA).
Ví dụ 1: Tìm hệ số a của hàm số: y = ax2 biết đồ thị hàm số của nó đi qua điểm A(2;4).
Giải:
Do đồ thị hàm số đi qua điểm A(2;4) nên: 4= a.22 a = 1
Ví dụ 2: Trong mặt phẳng tọa độ cho A(-2;2) và đường thẳng (d) có phương trình: y = -2(x + 1). Đường thẳng (d) có đi qua A không?
Giải:
Ta thấy -2.(-2 + 1) = 2 nên điểm A thuộc v ào đường thẳng (d)
II.Cách tìm giao điểm của hai đường y = f(x) và y = g(x).
Bước 1: Tìm hoành độ giao điểm là nghiệm của phương trình f(x) = g(x) (II)
Bước 2: Lấy nghiệm đó thay vào 1 trong hai công thức y = f(x) hoặc y = g(x) để tìm tung độ giao điểm.
Chú ý: Số nghiệm của phương trình (II) là số giao điểm của hai đường trên.
III.Quan hệ giữa hai đường thẳng.
Xét hai đường thẳng : (d1) : y = a1x + b1.
(d2) : y = a2x + b2.
(d1) cắt (d2) a1 a2.
d1) // (d2)
d1) (d2)
(d1) (d2) a1 a2 = -1
IV.Tìm điều kiện để 3 đường thẳng đồng qui.
Bước 1: Giải hệ phương trình gồm hai đường thẳng không chứa tham số để tìm (x;y).
Bước 2: Thay (x;y) vừa tìm được vào phương trình còn lại để tìm ra tham số .
V.Quan hệ giữa (d): y = ax + b và (P): y = cx2 (c0).
1.Tìm tọa độ giao điểm của (d) và (P).
Bước 1: Tìm hoành độ giao điểm là nghiệm của phương trình:
cx2= ax + b (V)
Bước 2: Lấy nghiệm đó thay vào 1 trong hai công thức y = ax +b hoặc y = cx2 để tìm tung độ giao điểm.
Chú ý: Số nghiệm của phương trình (V) là
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Phạm Tuyên
Dung lượng: 1,11MB|
Lượt tài: 0
Loại file: rar
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)