Cac bai hinh hay on vao lop 10
Chia sẻ bởi DƯơng Văn Thắng |
Ngày 13/10/2018 |
51
Chia sẻ tài liệu: cac bai hinh hay on vao lop 10 thuộc Đại số 9
Nội dung tài liệu:
Bài 1 Cho đường tròn (O; R), từ một điểm A trên (O) kẻ tiếp tuyến d với (O). Trên đường thẳng d lấy điểm M bất kì ( M khác A) kẻ cát tuyến MNP và gọi K là trung điểm của NP, kẻ tiếp tuyến MB (B là tiếp điểm). Kẻ AC ( MB, BD ( MA, gọi H là giao điểm của AC và BD, I là giao điểm của OM và AB.
Chứng minh tứ giác AMBO nội tiếp.
Chứng minh năm điểm O, K, A, M, B cùng nằm trên một đường tròn .
Chứng minh OI.OM = R2; OI. IM = IA2.
Chứng minh OAHB là hình thoi.
Chứng minh ba điểm O, H, M thẳng hàng.
Tìm quỹ tích của điểm H khi M di chuyển trên đường thẳng d
Lời giải:
(HS tự làm).
Vì K là trung điểm NP nên OK ( NP ( quan hệ đường kính
Và dây cung) => (OKM = 900. Theo tính chất tiếp tuyến ta có (OAM = 900; (OBM = 900. như vậy K, A, B cùng nhìn OM dưới một góc 900 nên cùng nằm trên đường tròn đường kính OM.
Vậy năm điểm O, K, A, M, B cùng nằm trên một đường tròn.
3. Ta có MA = MB ( t/c hai tiếp tuyến cắt nhau); OA = OB = R
=> OM là trung trực của AB => OM ( AB tại I .
Theo tính chất tiếp tuyến ta có (OAM = 900 nên tam giác OAM vuông tại A có AI là đường cao.
Áp dụng hệ thức giữa cạnh và đường cao => OI.OM = OA2 hay OI.OM = R2; và OI. IM = IA2.
4. Ta có OB ( MB (tính chất tiếp tuyến) ; AC ( MB (gt) => OB // AC hay OB // AH.
OA ( MA (tính chất tiếp tuyến) ; BD ( MA (gt) => OA // BD hay OA // BH.
=> Tứ giác OAHB là hình bình hành; lại có OA = OB (=R) => OAHB là hình thoi.
5. Theo trên OAHB là hình thoi. => OH ( AB; cũng theo trên OM ( AB => O, H, M thẳng hàng( Vì qua O chỉ có một đường thẳng vuông góc với AB).
6. (HD) Theo trên OAHB là hình thoi. => AH = AO = R. Vậy khi M di động trên d thì H cũng di động nhưng luôn cách A cố định một khoảng bằng R. Do đó quỹ tích của điểm H khi M di chuyển trên đường thẳng d là nửa đường tròn tâm A bán kính AH = R
Bài 2 Cho tam giác ABC vuông ở A, đường cao AH. Vẽ đường tròn tâm A bán kính AH. Gọi HD là đường kính của đường tròn (A; AH). Tiếp tuyến của đường tròn tại D cắt CA ở E.
Chứng minh tam giác BEC cân.
Gọi I là hình chiếu của A trên BE, Chứng minh rằng AI = AH.
Chứng minh rằng BE là tiếp tuyến của đường tròn (A; AH).
Chứng minh BE = BH + DE.
Lời giải: (HD)
( AHC = (ADE (g.c.g) => ED = HC (1) và AE = AC (2).
Vì AB (CE (gt), do đó AB vừa là đường cao vừa là đường trung tuyến của (BEC => BEC là tam giác cân. => (B1 = (B2
2. Hai tam giác vuông ABI và ABH có cạnh huyền AB chung, (B1 = (B2 => ( AHB = (AIB => AI = AH.
3. AI = AH và BE ( AI tại I => BE là tiếp tuyến của (A; AH) tại I.
4. DE = IE và BI = BH => BE = BI+IE = BH + ED
Bài 3. Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt nhau tại H và cắt đường tròn (O) lần lượt tại M,N,P.
Chứng minh rằng:
Tứ giác CEHD, nội tiếp .
Bốn điểm B,C,E,F cùng nằm trên một đường tròn.
AE.AC = AH.AD; AD.BC = BE.AC.
H và M đối xứng nhau qua BC.
Xác định tâm đường tròn nội tiếp tam giác DEF.
Lời giải:
Xét tứ giác CEHD ta có:
( CEH = 900 ( Vì BE là đường cao)
( CDH = 900 ( Vì AD là đường cao)
=> ( CEH + ( CDH = 1800
Mà ( CEH và ( CDH là hai góc đối của tứ giác CEHD , Do đó CEHD là
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: DƯơng Văn Thắng
Dung lượng: 2,66MB|
Lượt tài: 0
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)