Bộ đề thi và đáp án thi vào lớp 10 môn Toán của sở GD&ĐT Thanh Hoá 2011-2012
Chia sẻ bởi Mai Huy Dũng |
Ngày 13/10/2018 |
46
Chia sẻ tài liệu: Bộ đề thi và đáp án thi vào lớp 10 môn Toán của sở GD&ĐT Thanh Hoá 2011-2012 thuộc Đại số 9
Nội dung tài liệu:
SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH VÀO LỚP 10 THPT
THANH HOÁ NĂM HỌC 2010 - 2011
Môn thi: Toán
Thời gian làm bài: 120 phút
Bài 1 (2.0 điểm):
Cho phương trình: x2 + mx - 4 = 0 (1) (với m là tham số)
1. Giải phương trình (1) khi m= 3
2. Giả sử x1, x2 là các nghiệm của phương trình (1), tìm m để:
x1(x22 + 1) + x2(x21 + 1) > 6.
Bài 2 (2.0 điểm):
Cho biểu thức: B = ( - )( - ) với b > 0; b≠ 9
1. Rút gọn B
2. Tìm b để biểu thức B nhận giá trị nguyên.
Bài 3(2.0 điểm):
Trong mặt phẳng toạ độ Oxy cho parabol (P): y = x2 và các điểm A, B thuộc parabol (P) vơi xA = 2, xB = - 1.
1. Tìm toạ độ các điểm A, B và viết phương trình đường thẳng AB.
2. Tim n để đường thẳng (d): y = (2n2 - n)x + n + 1 (với n là tham số) song song với đường thẳng AB.
Bài 4 (3.0 điểm):
Cho tam giác ABC có ba góc đều nhọn nội tiếp đường tròn tâm O, các đường cao BM, CN của tam giác cắt nhau tại H.
1. Chứng minh tứ giác BCMN là tứ giác nội tiếp trong một đường tròn.
2. Kéo dài AO cắt đường tròn (O) tại K. Chứng minh tứ giác BHCK là hình bình hành.
3. Cho cạnh BC cố định, A thay đổi trên cung lớn BC sao tam giác ABC luôn nhọn. Xác định vị trí điểm A để diện tích tam giác BCH lớn nhất.
Bài 5 (1.0 điểm):
Cho a, b là c ác số dương thảo mãn a + b = 4.
Tìm giá trị nhỏ nhất của P = a2 + b2 +
--------------------Hết ----------------------
Họ tên thí sinh: .............................................. Số báo danh: .....................................
Chữ ký của giám thị 1 ...................... Chữ ký của giám thị 2 .....................................
SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH VÀO LỚP 10 THPT
THANH HOÁ NĂM HỌC 2010 - 2011
Đáp án chấm Môn thi: Toán
Thời gian làm bài: 120 phút
Bài
Nội dung
Điểm
1
Cho phương trình: x2 + mx - 4 = 0 (1) (với m là tham số)
1. Giải phương trình (1) khi m= 3:
- Phương trình trở thành: x2 + 3x - 4 = 0
- Vì tổng các hệ số: 1 + 3 + (-4) = 0 nên phương trình có nghiệm
x1=1 v à x2=- 4
Vậy khi m = 3 th ì phương trình có 2 nghiệm x1=1 v à x2=- 4
0,25
0,5
0.25
2. Giả sử x1, x2 là các nghiệm của phương trình (1), tìm m để:
x1(x22 + 1) + x2(x21 + 1) > 6.
- Phương trình có hai nghiệm x1, x2 thì: ∆ ≥ 0 mà ∆ = m2 + 16≥16 với mọi m. Khi đó theo Vi-ét ta có:
- Ta lại có x1(x22+1)+x2(x21+1)> 6<=> +x1 ++x2 > 6<=>
(x1+ x2) + x1+ x2> 6 <=> (x1+ x2)(x1x2+1)>6 (***)
- Thay (*), (**) vào (***) ta có: -m(-4+1) > 6 <=> 3m>6 <=> m >2
- Vậy khi m >2 th ì phương trình (1) có 2 nghiệm x1,x2 thỏa mãn
x1(x22+1)+x2(x21+1)> 6
0,25
0,25
0,25
0,25
2
Bài 2 (2.0 điểm):
Cho biểu thức: B = = ( + )( - ) với b > 0; b9
1. Rút gọn B
Với b > 0; b9 B =
=
0,5
0.5
2. Tìm b để biểu thức B nhận giá trị nguyên.
B = nguyên khi +3 là ước của 4 vì+3≥3 nên
+3 = 4 hay =1 <=> b=1
- Vậy với b = 1
THANH HOÁ NĂM HỌC 2010 - 2011
Môn thi: Toán
Thời gian làm bài: 120 phút
Bài 1 (2.0 điểm):
Cho phương trình: x2 + mx - 4 = 0 (1) (với m là tham số)
1. Giải phương trình (1) khi m= 3
2. Giả sử x1, x2 là các nghiệm của phương trình (1), tìm m để:
x1(x22 + 1) + x2(x21 + 1) > 6.
Bài 2 (2.0 điểm):
Cho biểu thức: B = ( - )( - ) với b > 0; b≠ 9
1. Rút gọn B
2. Tìm b để biểu thức B nhận giá trị nguyên.
Bài 3(2.0 điểm):
Trong mặt phẳng toạ độ Oxy cho parabol (P): y = x2 và các điểm A, B thuộc parabol (P) vơi xA = 2, xB = - 1.
1. Tìm toạ độ các điểm A, B và viết phương trình đường thẳng AB.
2. Tim n để đường thẳng (d): y = (2n2 - n)x + n + 1 (với n là tham số) song song với đường thẳng AB.
Bài 4 (3.0 điểm):
Cho tam giác ABC có ba góc đều nhọn nội tiếp đường tròn tâm O, các đường cao BM, CN của tam giác cắt nhau tại H.
1. Chứng minh tứ giác BCMN là tứ giác nội tiếp trong một đường tròn.
2. Kéo dài AO cắt đường tròn (O) tại K. Chứng minh tứ giác BHCK là hình bình hành.
3. Cho cạnh BC cố định, A thay đổi trên cung lớn BC sao tam giác ABC luôn nhọn. Xác định vị trí điểm A để diện tích tam giác BCH lớn nhất.
Bài 5 (1.0 điểm):
Cho a, b là c ác số dương thảo mãn a + b = 4.
Tìm giá trị nhỏ nhất của P = a2 + b2 +
--------------------Hết ----------------------
Họ tên thí sinh: .............................................. Số báo danh: .....................................
Chữ ký của giám thị 1 ...................... Chữ ký của giám thị 2 .....................................
SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH VÀO LỚP 10 THPT
THANH HOÁ NĂM HỌC 2010 - 2011
Đáp án chấm Môn thi: Toán
Thời gian làm bài: 120 phút
Bài
Nội dung
Điểm
1
Cho phương trình: x2 + mx - 4 = 0 (1) (với m là tham số)
1. Giải phương trình (1) khi m= 3:
- Phương trình trở thành: x2 + 3x - 4 = 0
- Vì tổng các hệ số: 1 + 3 + (-4) = 0 nên phương trình có nghiệm
x1=1 v à x2=- 4
Vậy khi m = 3 th ì phương trình có 2 nghiệm x1=1 v à x2=- 4
0,25
0,5
0.25
2. Giả sử x1, x2 là các nghiệm của phương trình (1), tìm m để:
x1(x22 + 1) + x2(x21 + 1) > 6.
- Phương trình có hai nghiệm x1, x2 thì: ∆ ≥ 0 mà ∆ = m2 + 16≥16 với mọi m. Khi đó theo Vi-ét ta có:
- Ta lại có x1(x22+1)+x2(x21+1)> 6<=> +x1 ++x2 > 6<=>
(x1+ x2) + x1+ x2> 6 <=> (x1+ x2)(x1x2+1)>6 (***)
- Thay (*), (**) vào (***) ta có: -m(-4+1) > 6 <=> 3m>6 <=> m >2
- Vậy khi m >2 th ì phương trình (1) có 2 nghiệm x1,x2 thỏa mãn
x1(x22+1)+x2(x21+1)> 6
0,25
0,25
0,25
0,25
2
Bài 2 (2.0 điểm):
Cho biểu thức: B = = ( + )( - ) với b > 0; b9
1. Rút gọn B
Với b > 0; b9 B =
=
0,5
0.5
2. Tìm b để biểu thức B nhận giá trị nguyên.
B = nguyên khi +3 là ước của 4 vì+3≥3 nên
+3 = 4 hay =1 <=> b=1
- Vậy với b = 1
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Mai Huy Dũng
Dung lượng: 1,11MB|
Lượt tài: 0
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)