BỘ ĐỀ ÔN THI VÀO LỚP 10 CÓ ĐÁP ÁN

Chia sẻ bởi Mai Hoa | Ngày 13/10/2018 | 53

Chia sẻ tài liệu: BỘ ĐỀ ÔN THI VÀO LỚP 10 CÓ ĐÁP ÁN thuộc Đại số 9

Nội dung tài liệu:

Đề 1:
Bài 1: Rút gọn biểu thức:
a, A =  ( với a > 0; a  1)
b, B =  ( với a > 0; a  1)
Bài 2: Cho hệ phương trình: 
a) Giải hệ phương trình khi m = 2
b) Giải hệ phương trình theo tham số m
c) Tìm m để hệ phương trình có nghiệm (x; y) thoả mãn x + y =- 1
d) Tìm hệ thức liên hệ giữa x và y không phụ thuộc vào m.
Bài 3:. Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt nhau tại H và cắt đường tròn (O) lần lượt tại M,N,P.
Chứng minh rằng:
Tứ giác CEHD, nội tiếp .
Bốn điểm B,C,E,F cùng nằm trên một đường tròn.
AE.AC = AH.AD; AD.BC = BE.AC.
H và M đối xứng nhau qua BC.
Xác định tâm đường tròn nội tiếp tam giác DEF.
Bài 4: Cho: a,b,c là các số thực không âm thỏa mãn: a+b+c = 1. Tìm GTLN của biểu thức: P = 
Đáp án:
Bài 1: Rút gọn biểu thức:
a, A =  ( với a > 0; a  1)
=  = 
=  =  = 
Vậy A = 
b, B =  ( với a > 0; a  1)
Ta có: B =  = =  = 
Vậy 

Bài 3: Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt nhau tại H và cắt đường tròn (O) lần lượt tại M,N,P.
Chứng minh rằng:
1.Tứ giác CEHD, nội tiếp .
2.Bốn điểm B,C,E,F cùng nằm trên một đường tròn.
3.AE.AC = AH.AD; AD.BC = BE.AC.
4.H và M đối xứng nhau qua BC.
5.Xác định tâm đường tròn nội tiếp tam giác DEF.

Lời giải:
Xét tứ giác CEHD ta có:
( CEH = 900 ( Vì BE là đường cao)
( CDH = 900 ( Vì AD là đường cao)
=> ( CEH + ( CDH = 1800
Mà ( CEH và ( CDH là hai góc đối của tứ giác CEHD , Do đó CEHD là tứ giác nội tiếp
Theo giả thiết: BE là đường cao => BE ( AC => (BEC = 900.
CF là đường cao => CF ( AB => (BFC = 900.
Như vậy E và F cùng nhìn BC dưới một góc 900 => E và F cùng nằm trên đường tròn đường kính BC.
Vậy bốn điểm B,C,E,F cùng nằm trên một đường tròn.
Xét hai tam giác AEH và ADC ta có: ( AEH = ( ADC = 900 ; Â là góc chung
=> ( AEH ( (ADC =>  => AE.AC = AH.AD.
* Xét hai tam giác BEC và ADC ta có: ( BEC = ( ADC = 900 ; (C là góc chung
=> ( BEC ( (ADC =>  => AD.BC = BE.AC.
4. Ta có (C1 = (A1 ( vì cùng phụ với góc ABC)
(C2 = (A1 ( vì là hai góc nội tiếp cùng chắn cung BM)
=> (C1 = ( C2 => CB là tia phân giác của góc HCM; lại có CB ( HM => ( CHM cân tại C
=> CB cũng là đương trung trực của HM vậy H và M đối xứng nhau qua BC.

5. Theo chứng minh trên bốn điểm B,C,E,F cùng nằm trên một đường tròn
=> (C1 = (E1 ( vì là hai góc nội tiếp cùng chắn cung BF)
Cũng theo chứng minh trên CEHD là tứ giác nội tiếp
(C1 = (E2 ( vì là hai góc nội tiếp cùng chắn cung HD)
(E1 = (E2 => EB là tia phân giác của góc FED.
Chứng minh tương tự ta cũng có FC là tia phân giác của góc DFE mà BE và CF cắt nhau tại H do đó H là tâm đường tròn nội tiếp tam giác DEF.
Bài 4: Cho: a,b,c là các số thực không âm thỏa mãn: a+b+c = 1. Tìm GTLN của biểu thức: P = 
Giải:
Theo BĐT Bunhiacopxki ta có:
 Dấu đẳng thức xảy ra ( a=b=c
( Dấu đẳng thức xảy ra ( a=b=c
( Dấu đẳng thức xảy
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Mai Hoa
Dung lượng: 1,50MB| Lượt tài: 1
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)