BÀI TAP HINH CHUONG I LOP 8
Chia sẻ bởi Đinh Ngoc Ha |
Ngày 13/10/2018 |
32
Chia sẻ tài liệu: BÀI TAP HINH CHUONG I LOP 8 thuộc Hình học 8
Nội dung tài liệu:
BÀI TậP ÔN TậP CHƯƠNG I HÌNH 8
Bài 1: Cho hình bình hành ABCD có BC = 2AB và góc A = 600. Gọi E, F theo thứ tự là trung đIểm của BC và AD.
Tứ giác ECDF là hình gì?
Tứ giác ABED là hình gì? Vì sao?
Tính số đo của góc AED.
Bài 2: Cho (ABC. Gọi M, N lần lượt là trung điểm của BC, AC. Gọi H là điểm đối xứng của N qua M.
a) C/m tứ giác BNCH và ABHN là hình bình hành.
b) (ABC thỏa mãn điều kiện gì thì tứ giác BCNH là hình chữ nhật.
Câu 3: Cho hình thoi ABCD, gọi O là giao điểm của hai đường chéo. Vẽ đường thẳng qua B và song song với AC, vẽ đường thẳng qua C và song song với BD, hai đường thẳng đó cắt nhau ở K.
Chứng minh tứ giác OBKC là hình chữ nhật
Chứng minh AB = OK
Tìm điều kiện của hình thoi ABCD để tứ giác OBKC là hình vuông?
Bài 4: Cho tứ giác ABCD. Gọi O là giao điểm của 2 đường chéo (không vuông góc), I và K lần lượt là trung điểm của BC và CD. Gọi M và N theo thứ tự là điểm đối xứng của điểm O qua tâm I và K.
a) C/m rằng tứ giác BMND là hình bình hành.
b) Với điều kiện nào của hai đường chéo AC và BD thì tứ giác BMND là hình chữ nhật.
c) Chứng minh 3 điểm M, C, N thẳng hàng.
Bài 5: Cho hình bình hành ABCD. Gọi E và F lần lượt là trung điểm của AD và BC. Đường chéo AC cắt các đoạn thẳng BE và DF theo thứ tự tại P và Q.
a) C/m tứ giác BEDF là hình bình hành.
b) Chứng minh AP = PQ = QC.
c) Gọi R là trung điểm của BP. Chứng minh tứ giác ARQE là hình bình hành.
Bài 6: Cho tứ giác ABCD. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA.
a) Tứ giác MNPQ là hình gì? Vì sao?
b) Tìm điều kiện của tứ giác ABCD để tứ giác MNPQ là hình vuông?
c) Với điều kiện câu b) hãy tính tỉ số diện tích của tứ giác ABCD và MNPQ
Bài 7: Cho (ABC, các đường cao BH và CK cắt nhau tại E. Qua B kẻ đường thẳng Bx vuông góc với AB. Qua C kẻ đường thẳng Cy vuông góc với AC. Hai đường thẳng Bx và Cy cắt nhau tại D.
a) C/m tứ giác BDCE là hình bình hành.
b) Gọi M là trung điểm của BC. Chứng minh M cũng là trung điểm của ED.
c) (ABC phải thỏa mãn đ/kiện gì thì DE đi qua A
Bài 8: Cho hình thang cân ABCD (AB//CD), E là trung điểm của AB.
a) C/m: ( EDC cân
b) Gọi I,K,M theo thứ tự là trung điểm của BC, CD, DA. Tứ giác EIKM là hình gì? Vì sao?
c) Tính S ABCD, SEIKM biết EK = 4, IM = 6.
Bài 9: Cho hình bình hành ABCD. Gọi E, F lần lượt là trung điểm của AB và CD.
a) Tứ giác DEBF là hình gì? Vì sao?
b) C/m 3 đường thẳng AC, BD, EF đồng qui.
c) Gọi giao điểm của AC với DE và BF theo thứ tự là M và N. Chứng minh tứ giác EMFN là hình bình hành.
d) Tính SEMFN khi biết AC = a, BC= b, AC BD
Bài 10: Cho hình thang cân ABCD (AB//CD) và CD = 2AB. Gọi M, N, P lần lượt là trung điểm của các cạnh BC, CD và AD.
Chứng minh tứ giác ABCN là hình bình hành ?
b/ Gọi O là giao điểm của AC và BN. Chứng minh ba điểm P, O, M thẳng hàng. c) Chứng minh: PO = 2OM
Bài 11: Cho hình thoi ABCD, gọi O là giao điểm của hai đường chéo. Vẽ đường thẳng qua B và song song với AC, vẽ đường thẳng qua C và song song với BD, hai đường thẳng đó cắt nhau ở K
Chứng minh tứ giác OBKC là hình chữ nhật b)Chứng minh AB = OK
c) Tìm điều kiện của hình thoi ABCD để tứ giác OBKC là hình vuông?
Bài 12: Cho tam giác ABC vuông tại A, đường cao AH. Gọi D là điểm đối xứng với H qua AB, M là giao điểm của AB và DH , gọi E là điểm đối xứng với H qua AC,
Bài 1: Cho hình bình hành ABCD có BC = 2AB và góc A = 600. Gọi E, F theo thứ tự là trung đIểm của BC và AD.
Tứ giác ECDF là hình gì?
Tứ giác ABED là hình gì? Vì sao?
Tính số đo của góc AED.
Bài 2: Cho (ABC. Gọi M, N lần lượt là trung điểm của BC, AC. Gọi H là điểm đối xứng của N qua M.
a) C/m tứ giác BNCH và ABHN là hình bình hành.
b) (ABC thỏa mãn điều kiện gì thì tứ giác BCNH là hình chữ nhật.
Câu 3: Cho hình thoi ABCD, gọi O là giao điểm của hai đường chéo. Vẽ đường thẳng qua B và song song với AC, vẽ đường thẳng qua C và song song với BD, hai đường thẳng đó cắt nhau ở K.
Chứng minh tứ giác OBKC là hình chữ nhật
Chứng minh AB = OK
Tìm điều kiện của hình thoi ABCD để tứ giác OBKC là hình vuông?
Bài 4: Cho tứ giác ABCD. Gọi O là giao điểm của 2 đường chéo (không vuông góc), I và K lần lượt là trung điểm của BC và CD. Gọi M và N theo thứ tự là điểm đối xứng của điểm O qua tâm I và K.
a) C/m rằng tứ giác BMND là hình bình hành.
b) Với điều kiện nào của hai đường chéo AC và BD thì tứ giác BMND là hình chữ nhật.
c) Chứng minh 3 điểm M, C, N thẳng hàng.
Bài 5: Cho hình bình hành ABCD. Gọi E và F lần lượt là trung điểm của AD và BC. Đường chéo AC cắt các đoạn thẳng BE và DF theo thứ tự tại P và Q.
a) C/m tứ giác BEDF là hình bình hành.
b) Chứng minh AP = PQ = QC.
c) Gọi R là trung điểm của BP. Chứng minh tứ giác ARQE là hình bình hành.
Bài 6: Cho tứ giác ABCD. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA.
a) Tứ giác MNPQ là hình gì? Vì sao?
b) Tìm điều kiện của tứ giác ABCD để tứ giác MNPQ là hình vuông?
c) Với điều kiện câu b) hãy tính tỉ số diện tích của tứ giác ABCD và MNPQ
Bài 7: Cho (ABC, các đường cao BH và CK cắt nhau tại E. Qua B kẻ đường thẳng Bx vuông góc với AB. Qua C kẻ đường thẳng Cy vuông góc với AC. Hai đường thẳng Bx và Cy cắt nhau tại D.
a) C/m tứ giác BDCE là hình bình hành.
b) Gọi M là trung điểm của BC. Chứng minh M cũng là trung điểm của ED.
c) (ABC phải thỏa mãn đ/kiện gì thì DE đi qua A
Bài 8: Cho hình thang cân ABCD (AB//CD), E là trung điểm của AB.
a) C/m: ( EDC cân
b) Gọi I,K,M theo thứ tự là trung điểm của BC, CD, DA. Tứ giác EIKM là hình gì? Vì sao?
c) Tính S ABCD, SEIKM biết EK = 4, IM = 6.
Bài 9: Cho hình bình hành ABCD. Gọi E, F lần lượt là trung điểm của AB và CD.
a) Tứ giác DEBF là hình gì? Vì sao?
b) C/m 3 đường thẳng AC, BD, EF đồng qui.
c) Gọi giao điểm của AC với DE và BF theo thứ tự là M và N. Chứng minh tứ giác EMFN là hình bình hành.
d) Tính SEMFN khi biết AC = a, BC= b, AC BD
Bài 10: Cho hình thang cân ABCD (AB//CD) và CD = 2AB. Gọi M, N, P lần lượt là trung điểm của các cạnh BC, CD và AD.
Chứng minh tứ giác ABCN là hình bình hành ?
b/ Gọi O là giao điểm của AC và BN. Chứng minh ba điểm P, O, M thẳng hàng. c) Chứng minh: PO = 2OM
Bài 11: Cho hình thoi ABCD, gọi O là giao điểm của hai đường chéo. Vẽ đường thẳng qua B và song song với AC, vẽ đường thẳng qua C và song song với BD, hai đường thẳng đó cắt nhau ở K
Chứng minh tứ giác OBKC là hình chữ nhật b)Chứng minh AB = OK
c) Tìm điều kiện của hình thoi ABCD để tứ giác OBKC là hình vuông?
Bài 12: Cho tam giác ABC vuông tại A, đường cao AH. Gọi D là điểm đối xứng với H qua AB, M là giao điểm của AB và DH , gọi E là điểm đối xứng với H qua AC,
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Đinh Ngoc Ha
Dung lượng: 46,00KB|
Lượt tài: 1
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)