14 đề thi các tỉnh đang tiếp tục cập nhật 2017-2018

Chia sẻ bởi Nguyễn Nhật Nam | Ngày 13/10/2018 | 56

Chia sẻ tài liệu: 14 đề thi các tỉnh đang tiếp tục cập nhật 2017-2018 thuộc Đại số 9

Nội dung tài liệu:

SỞ GIÁO DỤC VÀ ĐÀO TẠO THI TUYỂN SINH VÀO LỚP 10 THPT
TỈNH ĐỒNG NAI NĂM HỌC 2017 – 2018

ĐỀ CHÍNH THỨC Môn thi : TOÁN
Thời gian làm bài : 120 phút
( Đề gổm 1 trang, có 5 câu ).


Câu 1. ( 2,25 điểm )
1) Giải phương trình 
2) Giải hệ phương trình : 
3) Giải phương trình 
Câu 2. ( 2,25 điểm )
Cho hai hàm số  và  có đồ thị lần lượt là ( P ) và ( d )
1) Vẽ hai đồ thị ( P ) và ( d ) trên cùng một mặt phẳng tọa độ.
2 ) Tìm tọa độ giao điểm của hai đồ thị ( P ) và ( d ).

Câu 3. ( 1,75 điểm )
1) Cho a > 0 và a4 . Rút gọn biểu thức 
2) Một đội xe dự định chở 120 tấn hàng. Để tăng sự an toàn nên đến khi thực hiện, đội xe được bổ sung thêm 4 chiếc xe, lúc này số tấn hàng của mỗi xe chở ít hơn số tấn hàng của mỗi xe dự định chở là 1 tấn. Tính số tấn hàng của mỗi xe dự định chở, biết số tấn hàng của mỗi xe chở khi dự định là bằng nhau, khi thực hiện là bằng nhau.

Câu 4 : ( 0,75 điểm )
Tìm các giá trị của tham số thực m để phương trình: x2 + ( 2m – 1 )x + m2 – 1 = 0 có hai nghiệm phân biệt x1, x2 sao cho biểu thức P = ( x1 )2 + ( x2 )2 đạt giá trị nhỏ nhất.
Câu 5 : ( 3,0 điểm )
Cho tam giác ABC có ba đường cao AD, BE, CF cắt nhau tại H. Biết ba góc đều là góc nhọn. Gọi M là trung điểm của đoạn AH.
1) Chứng minh tứ giác AEHF nội tiếp đường tròn.
2) Chứng minh CE.CA = CD.CB.
3) Chứng minh EM là tiếp tuyến của đường tròn ngoại tiếp tam giác BEF.
4) Gọi I và J tương ứng là tâm đường tròn nội tiếp hai tam giác BDF và EDC. Chứng minh 











SỞ GIÁO DỤC VÀ ĐÀO TẠO
PHÚ THỌ
KỲ THI TUYỂN SINH
VÀO LỚP 10 TRUNG HỌC PHỔ THÔNG
NĂM HỌC 2017 – 2018
Môn: TOÁN
Thời gian làm bài: 120 phút, không kể thời gian giao đề
Đề thi có 01 trang



Câu 1 (1,5 điểm)
a) Giải phương trình: .
b) Giải hệ phương trình: .
Câu 2 (2,5 điểm)
Trong mặt phẳng tọa độ Oxy cho parabol (P) có phương trình  và hai điểm A, B thuộc (P) có hoành độ lần lượt là .
a) Tìm tọa độ A, B.
b) Viết phương trình đường thẳng (d) đi qua hai điểm A,B.
c) Tính khoảng cách từ O (gốc tọa độ) đến đường thẳng (d).
Câu 3 (2,0 điểm)
Cho phương trình:  (m là tham số).
a) Giải phương trình với .
b) Tìm m để phương trình có hai nghiệm phân biệt  thỏa mãn điều kiện :
.
Câu 4 (3,0 điểm)
Cho tứ giác ABCD nội tiếp đường tròn (O; R). Gọi I là giao điểm AC và BD. Kẻ IH vuông góc với AB; IK vuông góc với AD ().
a) Chứng minh tứ giác AHIK nội tiếp đường tròn.
b) Chứng minh rằng IA.IC = IB.ID.
c) Chứng minh rằng tam giác HIK và tam giác BCD đồng dạng.
d) Gọi S là diện tích tam giác ABD, S’ là diện tích tam giác HIK. Chứng minh rằng:

Câu 5 (1,0 điểm)
Giải phương trình : .

-------------- Hết--------------
Họ và tên thí sinh: ...................................................................... SBD: .................
Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm.
SỞ GIÁO DỤC VÀ ĐÀO TẠO TÂY NINH.


KỲ THI TUYỂN SINH VÀO LỚP 10 THPT NĂM HỌC 2017 - 2018
Ngày thi: 02 tháng 06 năm 2017
Môn thi: TOÁN (Không chuyên)
Thời gian: 120 phút (Không kể thời gian giao đề)


ĐÊ CHÍNH THỨC
(Đề thi có 01 trang, thí sinh không phài chép đề vào giấy thi)


Câu 1: (1,0 điểm) Rút gọn biểu thức T = 
Câu
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Nguyễn Nhật Nam
Dung lượng: 2,02MB| Lượt tài: 1
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)