104 đề Toán ôn thi vào 10 hay

Chia sẻ bởi Ngô Tùng Toại | Ngày 13/10/2018 | 63

Chia sẻ tài liệu: 104 đề Toán ôn thi vào 10 hay thuộc Đại số 9

Nội dung tài liệu:

Đề số 1
Câu 1 : ( 3 điểm ) Giải các phương trình
3x2 – 48 = 0 .
x2 – 10 x + 21 = 0 .


Câu 2 : ( 2 điểm )
Tìm các giá trị của a , b biết rằng đồ thị của hàm số y = ax + b đi qua hai điểm
A( 2 ; - 1 ) và B ( 
b) Với giá trị nào của m thì đồ thị của các hàm số y = mx + 3 ; y = 3x –7 và đồ thị của hàm số xác định ở câu ( a ) đồng quy .

Câu 3 ( 2 điểm ) Cho hệ phương trình .

Giải hệ khi m = n = 1 .
Tìm m , n để hệ đã cho có nghiệm 
Câu 4 : ( 3 điểm ). Cho tam giác vuông ABC = 900 ) nội tiếp trong đường tròn tâm O . Trên cung nhỏ AC ta lấy một điểm M bất kỳ ( M khác A và C ) . Vẽ đường tròn tâm A bán kính AC , đường tròn này cắt đường tròn (O) tại điểm D ( D khác C ) . Đoạn thẳng BM cắt đường tròn tâm A ở điểm N .
Chứng minh MB là tia phân giác của góc
Chứng minh BC là tiếp tuyến của đường tròn tâm A nói trên .
So sánh góc CNM với góc MDN .
Cho biết MC = a , MD = b . Hãy tính đoạn thẳng MN theo a và b .



đề số 2
Câu 1 : ( 3 điểm ). Cho hàm số : y =  ( P )
Tính giá trị của hàm số tại x = 0 ; -1 ;  ; -2 .
Biết f(x) =  tìm x .
Xác định m để đường thẳng (D) : y = x + m – 1 tiếp xúc với (P) .
Câu 2 : ( 3 điểm )
Cho hệ phương trình :

Giải hệ khi m = 1 .
Giải và biện luận hệ phương trình .
Câu 3 : ( 1 điểm ). Lập phương trình bậc hai biết hai nghiệm của phương trình là :
 
Câu 4 : ( 3 điểm )
Cho ABCD là một tứ giác nội tiếp . P là giao điểm của hai đờng chéo AC và BD .
Chứng minh hình chiếu vuông góc của P lên 4 cạnh của tứ giác là 4 đỉnh của một tứ giác có đường tròn nội tiếp .
M là một điểm trong tứ giác sao cho ABMD là hình bình hành . Chứng minh rằng nếu góc CBM = góc CDM thì góc ACD = góc BCM .
Tìm điều kiện của tứ giác ABCD để :
 





Đề số 3

Câu 1 ( 2 điểm ). Giải phương trình
1- x - = 0

Câu 2 ( 2 điểm ). Cho Parabol (P) : y =  và đường thẳng (D) : y = px + q .
Xác định p và q để đường thẳng (D) đi qua điểm A ( - 1 ; 0 ) và tiếp xúc với (P) . Tìm toạ độ tiếp điểm .
Câu 3 : ( 3 điểm ). Trong cùng một hệ trục toạ độ Oxy cho parabol (P) : 
và đường thẳng (D) :
Vẽ (P) .
Tìm m sao cho (D) tiếp xúc với (P) .
Chứng tỏ (D) luôn đi qua một điểm cố định .

Câu 4 ( 3 điểm ). Cho tam giác vuông ABC ( góc A = 900 ) nội tiếp đường tròn tâm O , kẻ đường kính AD .
Chứng minh tứ giác ABCD là hình chữ nhật .
Gọi M , N thứ
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Ngô Tùng Toại
Dung lượng: 1,32MB| Lượt tài: 0
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)