1 số đề thi văn hóa hsg9 cấp tỉnh hình học
Chia sẻ bởi Nguyễn Cao Tấn |
Ngày 13/10/2018 |
54
Chia sẻ tài liệu: 1 số đề thi văn hóa hsg9 cấp tỉnh hình học thuộc Đại số 9
Nội dung tài liệu:
Bài 1/ Cho hai đường tròn (O; R) và (O’; r) tiếp xúc ngoài với nhau tại A. Trên đường tròn (O; R) vẽ dây AB = R. Trên cung lớn AB lấy điểm M, đường thẳng MA cắt đường tròn (O’; r) tại N (N khác A). Đường thẳng qua N và song song với AB cắt đường thẳng MB tại E.
a) Chứng minh rằng độ dài đoạn thẳng NE không phụ thuộc vị trí điểm M trên cung lớn AB.
b) Tìm vị trí của điểm M trên cung lớn AB để tam giác MNE có diện tích lớn nhất và tính giá trị lớn nhất đó.
Bài 2/ Cho tam giác cân ABC (AB = AC). M là điểm chuyển động trên cạnh đáy BC. Dựng đường tròn (O1) qua M và tiếp xúc với AB tại B, đường tròn (O2) qua M và tiếp xúc với AC tại C. Hai đường tròn (O1), (O2) cắt nhau tại D.
a) Chứng minh đường thẳng DM luôn đi qua một điểm cố định
b) Chứng minh tổng độ dài hai đường tròn trên không phụ thuộc vào vị trí của M
Bài 3/Cho tam giác ABC không cân tại A, gọi M là trung điểm của BC, AD là đường cao, E, F lần lượt là các hình chiếu vuông góc của B, C trên đường kính AA’ của đường tròn ngoại tiếp tam giác ABC. Chứng minh rằng: M là tâm đường tròn ngoại tiếp tam giác DEF
Bài 4/ Cho tam giác cân ABC (AB = AC;< 900), một đường tròn (O) tiếp xúc với AB, AC tại B và C. Trên cung BC nằm trong tam giác ABC lấy một điểm M . Gọi I; H; K lần lượt là hình chiếu của M trên BC; CA; AB và P là giao điểm của MB với IK, Q là giao điểm của MC với IH.
a) Chứng minh rằng tia đối của tia MI là phân giác của góc HMK.
b) Chứng minh PQ // BC.
c) Gọi (O1) và (O2 ) lần lượt là đường tròn ngoại tiếp MPK vàMQH. Chứng minh rằng PQ là tiếp tuyến chung của hai đường tròn (O1) và (O2 ).
d) Gọi D là trung điểm của BC; N là giao điểm thứ hai của (O1),(O2 ) Chứng minh rằng M,N,D thẳng hàng.
Bài 5: Cho ba điểm cố định A,B,C thẳng hàng theo thứ tự đó.vẽ đường tròn tâm O qua B và C.Qua A vẽ tiếp tuyến AE,AF với đường tròn (O); Gọi I là trung điểm BC ,N là trung điểm EF .
a.Chứng minh rằng các điểm E, F luôn nằm trên một đường tròn cố định khi đường tròn (O) thay đổi.
b.Đường thẳng FI cắt đường tròn (O) tại K .Chứng minh rằng :EK song song với AB .
c.Chứng minh rằng tâm đường tròn ngoại tiếp tam giác ONI chạy trên một đường thẳng cố định khi đường tròn(O) thay đổi.
a) Chứng minh rằng độ dài đoạn thẳng NE không phụ thuộc vị trí điểm M trên cung lớn AB.
b) Tìm vị trí của điểm M trên cung lớn AB để tam giác MNE có diện tích lớn nhất và tính giá trị lớn nhất đó.
Bài 2/ Cho tam giác cân ABC (AB = AC). M là điểm chuyển động trên cạnh đáy BC. Dựng đường tròn (O1) qua M và tiếp xúc với AB tại B, đường tròn (O2) qua M và tiếp xúc với AC tại C. Hai đường tròn (O1), (O2) cắt nhau tại D.
a) Chứng minh đường thẳng DM luôn đi qua một điểm cố định
b) Chứng minh tổng độ dài hai đường tròn trên không phụ thuộc vào vị trí của M
Bài 3/Cho tam giác ABC không cân tại A, gọi M là trung điểm của BC, AD là đường cao, E, F lần lượt là các hình chiếu vuông góc của B, C trên đường kính AA’ của đường tròn ngoại tiếp tam giác ABC. Chứng minh rằng: M là tâm đường tròn ngoại tiếp tam giác DEF
Bài 4/ Cho tam giác cân ABC (AB = AC;< 900), một đường tròn (O) tiếp xúc với AB, AC tại B và C. Trên cung BC nằm trong tam giác ABC lấy một điểm M . Gọi I; H; K lần lượt là hình chiếu của M trên BC; CA; AB và P là giao điểm của MB với IK, Q là giao điểm của MC với IH.
a) Chứng minh rằng tia đối của tia MI là phân giác của góc HMK.
b) Chứng minh PQ // BC.
c) Gọi (O1) và (O2 ) lần lượt là đường tròn ngoại tiếp MPK vàMQH. Chứng minh rằng PQ là tiếp tuyến chung của hai đường tròn (O1) và (O2 ).
d) Gọi D là trung điểm của BC; N là giao điểm thứ hai của (O1),(O2 ) Chứng minh rằng M,N,D thẳng hàng.
Bài 5: Cho ba điểm cố định A,B,C thẳng hàng theo thứ tự đó.vẽ đường tròn tâm O qua B và C.Qua A vẽ tiếp tuyến AE,AF với đường tròn (O); Gọi I là trung điểm BC ,N là trung điểm EF .
a.Chứng minh rằng các điểm E, F luôn nằm trên một đường tròn cố định khi đường tròn (O) thay đổi.
b.Đường thẳng FI cắt đường tròn (O) tại K .Chứng minh rằng :EK song song với AB .
c.Chứng minh rằng tâm đường tròn ngoại tiếp tam giác ONI chạy trên một đường thẳng cố định khi đường tròn(O) thay đổi.
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Nguyễn Cao Tấn
Dung lượng: 25,50KB|
Lượt tài: 1
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)