Tuyen tap de thi vao lop 10

Chia sẻ bởi Nguyễn Minh Tú | Ngày 14/10/2018 | 62

Chia sẻ tài liệu: Tuyen tap de thi vao lop 10 thuộc Tin học 8

Nội dung tài liệu:

SỞ GIÁO DỤC VÀ ĐÀO TẠO NGHỆ AN

KỲ THI TUYỂN SINH VÀO LỚP 10 THPT
NĂM HỌC 1999 - 2000


Môn thi: TOÁN
Thời gian: 120 phút (không kể thời gian giao đề)

A. Lý thuyết ( Học sinh chọn một trong 2 đề )
Đề I
Nêu định nghĩa và tính chất của hàm số bậc nhất.
Áp dụng cho hai hàm số y = (3m – 1)x + 2 với giá trị nào m thì hàm số trên đồng biến , nghịch biến.
Đề II
Chứng minh định lí đường kính là dây cung lớn nhất.
B. Tự luận (8 điểm)
Bài 1
Chon biểu thức 
Tìm điều kiện và rút gọn P
Tính giá trị của P khi  .
Bài 2 ( Giải bài toán sau bằng cách lập phương trình )
Hai xe đạp khởi hành cùng lúc từ A đến B cách nhau 60 km biết vận tốc của người thứ nhất bé hơn người thứ hai là 2 km/giờ và người thứ nhất đến muộn hơn người thứ hai là 1 giờ. Tính vận tốc của mỗi xe.
Bài 3. Cho tam giác ABC nội tiếp đường tròn tâm O, các đường cao AD, BE cắt nhau tại H nằm trong tam giác ABC. Gọi M, N lần lượt là giao điểm của AD, BE với đường tròn tâm O.
Chứng minh rằng 4 điểm A, E, D, B cùng thuộc một đường tròn.
Chứng minh MN // DE.
Chứng minh CO vuông góc DE.
Cho AB cố định xác định C trên cung lớn AB để diện tích tam giác ABC lớn nhất .




SỞ GIÁO DỤC VÀ ĐÀO TẠO NGHỆ AN

KỲ THI TUYỂN SINH VÀO LỚP 10 THPT
NĂM HỌC 2000 - 2001


Môn thi: TOÁN
Thời gian: 120 phút (không kể thời gian giao đề)

A. Lý thuyết ( học sinh chọn một trong 2 đề )
Đề I
Nêu định nghĩa và viết công thức nghiệm của phơng trình bậc hai.
Ap dụng giải phơng trình : 3x2 – 5x + 2 = 0
Đề II
Phát biểu và chứng minh định lí góc tạo bởi tiếp tuyến và dây cung (Chỉ chứng minh trong trường hợp tâm nằm bên trong góc)
B. Bài toán
Bài 1. Chon biểu thức 
a) Tìm điều kiện và rút gọn P.
b) Tính P khi x = 0,25.
c) Tìm x để biểu thức P > -1.
Bài 2. Để chuẩn bị kỷ niệm sinh nhật bác Hồ, các đoàn viên hai lớp 9A và 9B của trường THCS kim liên tổ chức trồng 110 cây xung quanh sân trường. Mỗi đoàn viên 9A trồng 3 cây, mỗi đoàn viên 9B trồng 2 cây. Biết rằng số viên 9A đông hơn 9B là 5 em. Hãy tính số đoàn viên mỗi lớp nói trên.
Bài 3. Cho nửa đường tròn tâm O đường kính AB = 2R. Vẽ bán kính OC vuông góc với AB. Gọi M là điểm chính giữa cung BC, E là giao điểm AM với OC. Chứng minh:
Tứ giác MBOE nội tiếp đường tròn.
ME = MB.
CM là tiếp tuyến của đường tròn ngoại tiếp tứ giác MBOE.
Tính diện tích tam giác BME theo R.
Giải
Tứ giác MBOE nội tiếp đường tròn.
MBOE nội tiếp đường tròn vì có hai góc đối có tổng bằng 1800.
ME = MB.
Chứng minh tam giác MEB cân tại M bằng cách chứng minh  Vì ().


CM là tiếp tuyến của đường tròn ngoại tiếp tứ giác MBOE.
Gọi I là tâm đường tròn ngoại tiếp tứ giác MBOE (I là trung điểm của EB)
Ta có  dẫn đến CM//EB Mặt khác MI vuông góc với EB nên MI cũng vuông góc với MC. Từ đó suy ra đpcm
Ta có AE là phân giác của   
Hay 
Mặt khác


SỞ GIÁO DỤC VÀ ĐÀO TẠO NGHỆ AN

KỲ THI TUYỂN SINH VÀO LỚP 10 THPT
NĂM HỌC 2001 - 2002


Môn thi: TOÁN
Thời gian: 120 phút (không kể thời gian giao đề)
A. Lý thuyết ( học sinh chọn một trong 2 đề )
Đề I
Nêu định nghĩa và tính chất của hàm số bậc nhất.
Áp dụng cho hai hàm số y = x-3 và y = 2 – x.
Đề II
Chứng minh định lí : Đường kính vuông góc dây cung thì chia dây cung đó thành hai phần bằng nhau.
B. Tự luận (8 điểm)
Bài 1. Cho biểu thức 
Tìm điều kiện và rút gọn P
Tính giá trị của P khi .
c)Tìm a để : P > 0.
Bài 2. Cho phương trình bậc hai: x2 + (m+1)x + m – 1 =
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Nguyễn Minh Tú
Dung lượng: 803,00KB| Lượt tài: 1
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)