Chuyên đề Toán 5
Chia sẻ bởi Nguyễn Đăng Tình |
Ngày 10/10/2018 |
82
Chia sẻ tài liệu: Chuyên đề Toán 5 thuộc Kĩ thuật 5
Nội dung tài liệu:
KHAI THÁC MỘT BÀI TOÁN
Dạng toán có nội dung hình học liên quan đến diện tích tam giác là dạng toán khó đối với các em học sinh lớp 5. Để giúp các em có thêm kiến thức và có khả năng vận dụng khi gặp dạng toán này, tôi xin trao đổi một hướng khai thác một bài toán.
Bài toán 1 : Cho tam giác ABC, trên BC lấy M sao cho BM = MC, N là điểm trên cạnh AC sao cho NC = 2 x NA. Kéo dài MN cắt BA tại P. Hãy chứng tỏ AP = AB.
Lời giải : Nối BN, CP, kí hiệu S là diện tích tam giác, ta có : SPBM = SMPC (vì có đáy BM = MC và chung chiều cao hạ từ P). SBNM = SMNC (vì có đáy BM = MC và chung chiều cao hạ từ N).
Do đó SPBM - SBNM = SMPC - SMNC hay SPBN = SPNC. (1)
SPNC = SAPN x 2. (2) (vì có đáy NC = 2 x NA và chung chiều cao hạ từ P).
Từ (1) và (2) ta có SAPN x 2 = SPBN hay SAPN = SABN. Hai tam giác này có chung chiều cao hạ từ N nên đáy của chúng bằng nhau tức là AP = PB.
Thay đổi vị trí của M ; N ta có bài toán sau :
Bài toán 2 : Cho tam giác ABC có AB = 2 cm ; M là một điểm trên BC sao cho BM = 3 x MC ; N là một điểm trên AC sao cho AN = 2 x NC ; MN cắt BA kéo dài tại P.
a) Tính AP.
b) So sánh PN với NM.
Lời giải : Nối PC ; BN.
a) Tương tự như bài 1 ta chứng minh được SPBN = 3 x SPNC.
Nếu coi SPNC = a thì SPBN = 3 x a. Do SAPN = 2 x SNPC nên SAPN = 2 x a, suy ra SANB = a hay SAPN = 2 x SANB, mà hai tam giác này có chung chiều cao hạ từ N, nên AP = AB x 2 hay
AP = 2 x 2 = 4 (cm).
b) Theo phần (a) ta có : SPBN = 3 x a, SABN = a ; SABN = 2 x SNBC (vì có AN = 2 x NC và chung chiều cao hạ từ B), do đó SNBC = a/2. (1)
SNBM = 3/4SNBC (vì MB = 3 x MC
nên MB = 3/4 BC ; và chung chiều cao hạ từ N). (2)
Từ (1) và (2) ta có : SNBM = a/2 x 3/4 = (3x2)/8.
Hai tam giác PBN và NBM có chung chiều cao hạ từ đỉnh B xuống PM, có tỉ số diện tích là : (3 x a) :(3 x a)/8 = 8, nên tỉ số độ dài hai đáy cũng là 8 hay PN = 8 x NM.
Thay đổi vị trí M, N ta có bài toán sau :
Bài toán 3 : Cho tam giác ABC, M là điểm trên BC sao cho MC = 2 x MB ; N là điểm trên AC sao cho AN = 4 x NC ; NM cắt AB kéo dài tại P.
a) So sánh SAPM với S,sub>MPC.
b) So sánh AB với PB.
Lời giải : Nối AM ; PC.
a) Tương tự như bài 1 ta chứng minh được : SAPM = 4 x SMPC.
b) Tương tự ta cũng chứng minh được AB = 8 x PB.
Tiếp tục thay đổi vị trí của M, N, P để có bài toán sau :
Bài toán 4 : Cho tam giác ABC. Trên AB lấy M sao cho AM = 1/2 MB; trên cạnh AC lấy điểm N sao cho AN = 1/3 NC ; BN cắt CM tại P.
a) So sánh diện tích tam giác PBC với diện tích tam giác ABC.
b) Tính tỉ số độ dài PN so với PB.
Hướng dẫn giải :
Nối A với P ta có : SBCM = 2 x SMCA (vì có MB = 2 x MA và chung chiều cao hạ từ C). SBPM = 2 x SMPA (vì có MB = 2 x MA và chung chiều cao hạ từ P). Suy ra : SBPC = 2 x SCPA. (1)
Tương tự như trên ta có : SCBN = 3 x SNBA (vì có CN = 3 x NA và chung chiều cao hạ từ B) ; SCPN = 3 x SNPA (vì có CN = 3 x NA và chung chiều cao hạ từ P). Suy ra : SBPC = 3 x SAPB. (2)
Từ (1) và (2) ta thấy : nếu coi SPBC là 6 phần bằng nhau, thì S,sub>APB là 2 phần, SNPA là 3 phần
Dạng toán có nội dung hình học liên quan đến diện tích tam giác là dạng toán khó đối với các em học sinh lớp 5. Để giúp các em có thêm kiến thức và có khả năng vận dụng khi gặp dạng toán này, tôi xin trao đổi một hướng khai thác một bài toán.
Bài toán 1 : Cho tam giác ABC, trên BC lấy M sao cho BM = MC, N là điểm trên cạnh AC sao cho NC = 2 x NA. Kéo dài MN cắt BA tại P. Hãy chứng tỏ AP = AB.
Lời giải : Nối BN, CP, kí hiệu S là diện tích tam giác, ta có : SPBM = SMPC (vì có đáy BM = MC và chung chiều cao hạ từ P). SBNM = SMNC (vì có đáy BM = MC và chung chiều cao hạ từ N).
Do đó SPBM - SBNM = SMPC - SMNC hay SPBN = SPNC. (1)
SPNC = SAPN x 2. (2) (vì có đáy NC = 2 x NA và chung chiều cao hạ từ P).
Từ (1) và (2) ta có SAPN x 2 = SPBN hay SAPN = SABN. Hai tam giác này có chung chiều cao hạ từ N nên đáy của chúng bằng nhau tức là AP = PB.
Thay đổi vị trí của M ; N ta có bài toán sau :
Bài toán 2 : Cho tam giác ABC có AB = 2 cm ; M là một điểm trên BC sao cho BM = 3 x MC ; N là một điểm trên AC sao cho AN = 2 x NC ; MN cắt BA kéo dài tại P.
a) Tính AP.
b) So sánh PN với NM.
Lời giải : Nối PC ; BN.
a) Tương tự như bài 1 ta chứng minh được SPBN = 3 x SPNC.
Nếu coi SPNC = a thì SPBN = 3 x a. Do SAPN = 2 x SNPC nên SAPN = 2 x a, suy ra SANB = a hay SAPN = 2 x SANB, mà hai tam giác này có chung chiều cao hạ từ N, nên AP = AB x 2 hay
AP = 2 x 2 = 4 (cm).
b) Theo phần (a) ta có : SPBN = 3 x a, SABN = a ; SABN = 2 x SNBC (vì có AN = 2 x NC và chung chiều cao hạ từ B), do đó SNBC = a/2. (1)
SNBM = 3/4SNBC (vì MB = 3 x MC
nên MB = 3/4 BC ; và chung chiều cao hạ từ N). (2)
Từ (1) và (2) ta có : SNBM = a/2 x 3/4 = (3x2)/8.
Hai tam giác PBN và NBM có chung chiều cao hạ từ đỉnh B xuống PM, có tỉ số diện tích là : (3 x a) :(3 x a)/8 = 8, nên tỉ số độ dài hai đáy cũng là 8 hay PN = 8 x NM.
Thay đổi vị trí M, N ta có bài toán sau :
Bài toán 3 : Cho tam giác ABC, M là điểm trên BC sao cho MC = 2 x MB ; N là điểm trên AC sao cho AN = 4 x NC ; NM cắt AB kéo dài tại P.
a) So sánh SAPM với S,sub>MPC.
b) So sánh AB với PB.
Lời giải : Nối AM ; PC.
a) Tương tự như bài 1 ta chứng minh được : SAPM = 4 x SMPC.
b) Tương tự ta cũng chứng minh được AB = 8 x PB.
Tiếp tục thay đổi vị trí của M, N, P để có bài toán sau :
Bài toán 4 : Cho tam giác ABC. Trên AB lấy M sao cho AM = 1/2 MB; trên cạnh AC lấy điểm N sao cho AN = 1/3 NC ; BN cắt CM tại P.
a) So sánh diện tích tam giác PBC với diện tích tam giác ABC.
b) Tính tỉ số độ dài PN so với PB.
Hướng dẫn giải :
Nối A với P ta có : SBCM = 2 x SMCA (vì có MB = 2 x MA và chung chiều cao hạ từ C). SBPM = 2 x SMPA (vì có MB = 2 x MA và chung chiều cao hạ từ P). Suy ra : SBPC = 2 x SCPA. (1)
Tương tự như trên ta có : SCBN = 3 x SNBA (vì có CN = 3 x NA và chung chiều cao hạ từ B) ; SCPN = 3 x SNPA (vì có CN = 3 x NA và chung chiều cao hạ từ P). Suy ra : SBPC = 3 x SAPB. (2)
Từ (1) và (2) ta thấy : nếu coi SPBC là 6 phần bằng nhau, thì S,sub>APB là 2 phần, SNPA là 3 phần
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Nguyễn Đăng Tình
Dung lượng: 38,50KB|
Lượt tài: 2
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)