So nguyen to lop 6
Chia sẻ bởi To Dieu Ly |
Ngày 12/10/2018 |
55
Chia sẻ tài liệu: so nguyen to lop 6 thuộc Số học 6
Nội dung tài liệu:
Phiếu số 20 lớp 6C3 GV : Tô Diệu Ly : 7/10/2016)
bài 9 : tìm số nguyên tố p sao cho các số sau cũng là số nguyên tố
p + 2 và p + 10 ( HD giống câu h)
p + 10 và p + 20 ( HD giống câu h)
p + 2 và p + 94 ( HD giống câu h)
p + 6 ; p + 8 ; p + 12 ; p + 14
(HD p = 5 . Xét p có 5 dạng 5k , 5k + 1 , 5k +2, 5k +3 , 5k + 4
p + 2 ; p + 6 ; p + 8 ; p + 12 ; p + 14
(HD p = 5 . Xét p có 5 dạng 5k , 5k + 1 , 5k +2 , 5k +3 , 5k + 4
p + 4 ; P + 8
p + 2 ; p + 6 ; p + 8 ( HD p = 5
p + 2 ; p + 4 (HD số p có một trong 3 dạng 3k ,3k + 1 , 3k + 2 (k )
nếu p = 3k thì p = 3 (vì p là nguyên tố) khi đó p + 2 = 5, p + 4 = 7đều là nguyên tố
nếu p = 3k + 1 thì p + 2 = 3k + 3 chia hết cho 3 và lớn hơn 3 nên p + 2 là hợp số ,trái với đề bài . nếu p = 3k + 2 thì p + 4 = 3k + 6 chia hết cho 3 và lớn hơn 3 nên p + 4 là hợp số trái với đề bài .Vậy p = 3 là giá trị duy nhất cần tìm.
bài 10 : tìm tất cả các số tự nhiên n để mỗi số sau đều là số nguyên tố : n + 1 ; n + 3 ; n + 7 ; n + 9 ;n + 13 ; n + 15 ( HD Xét n 4 và n 5 Đs n = 4)
Bài 11 : cho p và 2p + 1 đều là số nguyên tố (p > 5) .Hỏi 4p + 1 là số nguyên tố hay hợp số
GIẢI
Do p là số nguyên tố lớn hơn 3 nên p không chia hết cho 3 suy ra 4p cũng không chia hết cho 3.Do 2p + 1 là số nguyên tố lớn hơn 3 nên 2p + 1 không chia hết cho 3 suy ra 2(2p + 1) không chia hết cho 3 hay 4p + 2 không chia hết cho 3 mặt khác trong 3 số tự nhiên liên tiếp 4p,4p + 1 , 4p + 2 có một số chia hết cho 3 do đó 4p + 1 chia hết cho 3 mà 4p + 1 > 3 suy ra 4p + 1 là hợp số.
Bài 12 : cho p và p + 4 là số nguyên tố (p>3) chứng tỏ rằng p + 8 là hợp số
Giải
Vì p là số nguyên tố lớn hơn 3 nên p = 3k + 1 hoặc p = 3k + 2
Nếu p = 3k + 2 thì p + 4 = 3k + 6 chia hết cho 3 suy ra loại
Nếu p = 3k + 1 thì p + 7 = 3k + 8 không chia hết cho 3 suy ra 2(3k + 7) không chia hết cho 3 hay 2p + 14 không chia hết cho 3 mà trong ba số tự nhiên liên tiếp có một số chia hết cho 3 mà 2p + 14 và 2p + 15 không chia hết cho 3 suy ra 2p + 16 chia hết cho 3 hay p + 8 chia hết cho 3 suy ra p + 8 là hợp số
Bài 13 : tìm 3 số lẻ liên tiếp đều là số nguyên tố .
Giải
Giả sử ba số lẻ liên tiếp đều là số nguyên tố là p , p+ 2, p + 4
Nếu p = 3 thì p + 2 = 5 và p + 4 = 7 đều là số nguyên tố ( thỏa mãn )
Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2
Với p = 3k + 1 thì p + 2 = 3k + 3 chia hết cho 3 (loại )
Với p = 3k + 2 thì p + 4 = 3k + 6 chia hết cho 3 ( loại)
Vậy chỉ có ba số là 3,5,7
Bài 14 : tìm ba số nguyên tố dạng p , p + 10 , p + 20
Giải
Ta viết p, (p + 1) + 9 , ( p + 2 ) + 18 .Trong ba số p ; p + 1 ; p + 2 luôn có một số chia hết cho 3 suy ra trong ba số p, (p + 1) + 9 , ( p + 2 ) + 18 luôn có một số chia hết cho 3 hay trong ba số
p , p + 10 , p + 20 luôn có một số chia hết cho 3 , vậy p = 3 ta có ba số đó là 3,13,
bài 9 : tìm số nguyên tố p sao cho các số sau cũng là số nguyên tố
p + 2 và p + 10 ( HD giống câu h)
p + 10 và p + 20 ( HD giống câu h)
p + 2 và p + 94 ( HD giống câu h)
p + 6 ; p + 8 ; p + 12 ; p + 14
(HD p = 5 . Xét p có 5 dạng 5k , 5k + 1 , 5k +2, 5k +3 , 5k + 4
p + 2 ; p + 6 ; p + 8 ; p + 12 ; p + 14
(HD p = 5 . Xét p có 5 dạng 5k , 5k + 1 , 5k +2 , 5k +3 , 5k + 4
p + 4 ; P + 8
p + 2 ; p + 6 ; p + 8 ( HD p = 5
p + 2 ; p + 4 (HD số p có một trong 3 dạng 3k ,3k + 1 , 3k + 2 (k )
nếu p = 3k thì p = 3 (vì p là nguyên tố) khi đó p + 2 = 5, p + 4 = 7đều là nguyên tố
nếu p = 3k + 1 thì p + 2 = 3k + 3 chia hết cho 3 và lớn hơn 3 nên p + 2 là hợp số ,trái với đề bài . nếu p = 3k + 2 thì p + 4 = 3k + 6 chia hết cho 3 và lớn hơn 3 nên p + 4 là hợp số trái với đề bài .Vậy p = 3 là giá trị duy nhất cần tìm.
bài 10 : tìm tất cả các số tự nhiên n để mỗi số sau đều là số nguyên tố : n + 1 ; n + 3 ; n + 7 ; n + 9 ;n + 13 ; n + 15 ( HD Xét n 4 và n 5 Đs n = 4)
Bài 11 : cho p và 2p + 1 đều là số nguyên tố (p > 5) .Hỏi 4p + 1 là số nguyên tố hay hợp số
GIẢI
Do p là số nguyên tố lớn hơn 3 nên p không chia hết cho 3 suy ra 4p cũng không chia hết cho 3.Do 2p + 1 là số nguyên tố lớn hơn 3 nên 2p + 1 không chia hết cho 3 suy ra 2(2p + 1) không chia hết cho 3 hay 4p + 2 không chia hết cho 3 mặt khác trong 3 số tự nhiên liên tiếp 4p,4p + 1 , 4p + 2 có một số chia hết cho 3 do đó 4p + 1 chia hết cho 3 mà 4p + 1 > 3 suy ra 4p + 1 là hợp số.
Bài 12 : cho p và p + 4 là số nguyên tố (p>3) chứng tỏ rằng p + 8 là hợp số
Giải
Vì p là số nguyên tố lớn hơn 3 nên p = 3k + 1 hoặc p = 3k + 2
Nếu p = 3k + 2 thì p + 4 = 3k + 6 chia hết cho 3 suy ra loại
Nếu p = 3k + 1 thì p + 7 = 3k + 8 không chia hết cho 3 suy ra 2(3k + 7) không chia hết cho 3 hay 2p + 14 không chia hết cho 3 mà trong ba số tự nhiên liên tiếp có một số chia hết cho 3 mà 2p + 14 và 2p + 15 không chia hết cho 3 suy ra 2p + 16 chia hết cho 3 hay p + 8 chia hết cho 3 suy ra p + 8 là hợp số
Bài 13 : tìm 3 số lẻ liên tiếp đều là số nguyên tố .
Giải
Giả sử ba số lẻ liên tiếp đều là số nguyên tố là p , p+ 2, p + 4
Nếu p = 3 thì p + 2 = 5 và p + 4 = 7 đều là số nguyên tố ( thỏa mãn )
Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2
Với p = 3k + 1 thì p + 2 = 3k + 3 chia hết cho 3 (loại )
Với p = 3k + 2 thì p + 4 = 3k + 6 chia hết cho 3 ( loại)
Vậy chỉ có ba số là 3,5,7
Bài 14 : tìm ba số nguyên tố dạng p , p + 10 , p + 20
Giải
Ta viết p, (p + 1) + 9 , ( p + 2 ) + 18 .Trong ba số p ; p + 1 ; p + 2 luôn có một số chia hết cho 3 suy ra trong ba số p, (p + 1) + 9 , ( p + 2 ) + 18 luôn có một số chia hết cho 3 hay trong ba số
p , p + 10 , p + 20 luôn có một số chia hết cho 3 , vậy p = 3 ta có ba số đó là 3,13,
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: To Dieu Ly
Dung lượng: 117,50KB|
Lượt tài: 1
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)