Ôn tập Toán 9 HKII_15-16
Chia sẻ bởi Nguyễn Lê Hữu Thắng |
Ngày 12/10/2018 |
86
Chia sẻ tài liệu: Ôn tập Toán 9 HKII_15-16 thuộc Số học 6
Nội dung tài liệu:
I/ ÔN TẬP HỌC KỲ II TOÁN 9
1/ LUYỆN TẬP VỀ GÓC NỘI TIẾP
Bài 1 : Cho tam giác ABC nội tiếp đường tròn (O) .Tia phân giác của góc A cắt đường tròn tại M . Tia phân giác của góc ngoài tại đỉnh A cắt đường tròn tại N . Chứng minh rằng :
Tam giác MBC cân .
Ba điểm M , O , N thẳng hàng .
Bài 2 : Cho nửa đường tròn (O) đường kính AB . M là điểm tuỳ ý trên nửa đường tròn ( M khác A và B ) . Kẻ MH ( AB ( H (AB ) . Trên cùng nửa mặt phẳng bờ AB chứa nửa đường tròn (O) vẽ hai nửa đường tròn tâm O1 đường kính AH và tâm O2 đường kính BH . MA và MB cắt hai nửa đường tròn (O1) và (O2) lần lượt tại P và Q .
Chứng minh MH = PQ .
Chứng minh hai tam giác MPQ và MBA đồng dạng .
Chứng minh PQ là tiếp tuyến chung của hai đường tròn (O1) và (O2)
Bài 3 :Cho (ABC đều , đường cao AH . M là điểm bất kỳ trên đáy BC . Kẻ
MP ( AB và MQ ( AC . Gọi O là trung của AM .
Chứng minh năm điểm A , P , M , H , Q cùng nằm trên một đường tròn .
Tứ giác OPHQ là hình gì ? chứng minh .
Xác định vị trí của M trên BC để PQ có độ dài nhỏ nhất .
Bài 4 : Cho đường tròn (O) đường kính AB . Lấy điểm M trên đường tròn (M khác A và B ) sao cho MA < MB . Lấy MA làm cạnh vẽ hình vuông MADE ( E thuộc đoạn thẳng MB ) . Gọi F là giao điểm của DE và AB .
Chứng minh (ADF và (BMA đồng dạng .
Lấy C là điểm chính giữa cung AB ( không chứa M ) .
Chứng minh CA = CE = CB
Trên đoạn thẳng MC lấy điểm I sao cho CI = CA . Chứng minh I là tâm đường tròn nội tiếp tam giác AMB .
Bài 5 : Cho nửa đường tròn (O) đường kính AB = 2R và điểm C nằm ngoài nửa đường tròn . CA cắt nửa đường tròn ở M , CB cắt nửa đường tròn ở N . Gọi H là giao điểm của AN và BM .
Chứng minh CH ( AB .
Gọi I là trung điểm của CH . Chứng minh MI là tiếp tuyến của nửa đường tròn (O)
Giả sử CH =2R . Tính số đo cung MN .
Bài 6 : Trên cung nhỏ BC của đường tròn ngoại tiếp tam giác đều ABC lấy một điểm P tuỳ ý . Gọi Q là giao điểm của AP và BC
Chứng minh BC2= AP . AQ .
Trên AP lấy điểm M sao cho PM = PB . Chứng minh BP+PC= AP.
Chứng minh .
-----HẾT----
2/ BÀI TẬP VỀ GÓC TẠO BỞI TIA TIẾP TUYẾN VÀ MỘT DÂY CUNG
Bài1 : Từ một điểm M cố định ở bên ngoài đường tròn (O) , kẻ một tiếp tuyến MT ( T là tiếp điểm ) và một cát tuyến MAB của đường tròn đó .
Chứng minh : MT2 = MA . MB b) Trường hợp cát tuyến MAB đi qua
tâm O . Cho MT = 20 cm , và cát tuyến dài nhất cùng xuất phát từ M bằng 50cm. Tính bán kính R của đường tròn (O) .
Bài 2: Cho nửa đường tròn (O) đường kính AB. Trên tia đối của tia AB lấy một điểm M . Vẽ tiếp tuyến MC với nửa đường tròn . Gọi H là hình chiếu của
C trên AB .
a) Chứng minh rằng CA là tia phân giác của góc MCH .
b) Giả sử MA =a, MC = 2a . Tính AB và CH theo a .
Bài 3: Cho đường tròn (O1) tiếp xúc trong với đường tròn (O) tại A . Đường kính AB của đường tròn (O) cắt đường tròn (O1) tại điểm thứ hai C khác A . Từ B vẽ tiếp tuyến BP với đường tròn (O1) cắt đường tròn (O) tại Q .Chứng minh AP là phân giác của góc QAB
Bài 4 : Cho hai đường tròn tâm O , O1 tiếp xúc ngoài nhau tại A . Trên đường tròn (O) lấy hai điểm phân biệt B , C khác A. Các đường thẳng BA , CA cắt đường tròn (O1) tại P và Q . Chứng minh PQ (( BC .
Bài 5 : Cho tam giác ABC nội tiếp đường tròn (O) và
( AB < AC ) . Đường tròn (I) đi qua B và C , tiếp xúc với AB tại B cắt đường thẳng AC tại D .
Chứng minh rằng : OA ( BD .
Bài 6 : Cho nửa đường tròn (O
1/ LUYỆN TẬP VỀ GÓC NỘI TIẾP
Bài 1 : Cho tam giác ABC nội tiếp đường tròn (O) .Tia phân giác của góc A cắt đường tròn tại M . Tia phân giác của góc ngoài tại đỉnh A cắt đường tròn tại N . Chứng minh rằng :
Tam giác MBC cân .
Ba điểm M , O , N thẳng hàng .
Bài 2 : Cho nửa đường tròn (O) đường kính AB . M là điểm tuỳ ý trên nửa đường tròn ( M khác A và B ) . Kẻ MH ( AB ( H (AB ) . Trên cùng nửa mặt phẳng bờ AB chứa nửa đường tròn (O) vẽ hai nửa đường tròn tâm O1 đường kính AH và tâm O2 đường kính BH . MA và MB cắt hai nửa đường tròn (O1) và (O2) lần lượt tại P và Q .
Chứng minh MH = PQ .
Chứng minh hai tam giác MPQ và MBA đồng dạng .
Chứng minh PQ là tiếp tuyến chung của hai đường tròn (O1) và (O2)
Bài 3 :Cho (ABC đều , đường cao AH . M là điểm bất kỳ trên đáy BC . Kẻ
MP ( AB và MQ ( AC . Gọi O là trung của AM .
Chứng minh năm điểm A , P , M , H , Q cùng nằm trên một đường tròn .
Tứ giác OPHQ là hình gì ? chứng minh .
Xác định vị trí của M trên BC để PQ có độ dài nhỏ nhất .
Bài 4 : Cho đường tròn (O) đường kính AB . Lấy điểm M trên đường tròn (M khác A và B ) sao cho MA < MB . Lấy MA làm cạnh vẽ hình vuông MADE ( E thuộc đoạn thẳng MB ) . Gọi F là giao điểm của DE và AB .
Chứng minh (ADF và (BMA đồng dạng .
Lấy C là điểm chính giữa cung AB ( không chứa M ) .
Chứng minh CA = CE = CB
Trên đoạn thẳng MC lấy điểm I sao cho CI = CA . Chứng minh I là tâm đường tròn nội tiếp tam giác AMB .
Bài 5 : Cho nửa đường tròn (O) đường kính AB = 2R và điểm C nằm ngoài nửa đường tròn . CA cắt nửa đường tròn ở M , CB cắt nửa đường tròn ở N . Gọi H là giao điểm của AN và BM .
Chứng minh CH ( AB .
Gọi I là trung điểm của CH . Chứng minh MI là tiếp tuyến của nửa đường tròn (O)
Giả sử CH =2R . Tính số đo cung MN .
Bài 6 : Trên cung nhỏ BC của đường tròn ngoại tiếp tam giác đều ABC lấy một điểm P tuỳ ý . Gọi Q là giao điểm của AP và BC
Chứng minh BC2= AP . AQ .
Trên AP lấy điểm M sao cho PM = PB . Chứng minh BP+PC= AP.
Chứng minh .
-----HẾT----
2/ BÀI TẬP VỀ GÓC TẠO BỞI TIA TIẾP TUYẾN VÀ MỘT DÂY CUNG
Bài1 : Từ một điểm M cố định ở bên ngoài đường tròn (O) , kẻ một tiếp tuyến MT ( T là tiếp điểm ) và một cát tuyến MAB của đường tròn đó .
Chứng minh : MT2 = MA . MB b) Trường hợp cát tuyến MAB đi qua
tâm O . Cho MT = 20 cm , và cát tuyến dài nhất cùng xuất phát từ M bằng 50cm. Tính bán kính R của đường tròn (O) .
Bài 2: Cho nửa đường tròn (O) đường kính AB. Trên tia đối của tia AB lấy một điểm M . Vẽ tiếp tuyến MC với nửa đường tròn . Gọi H là hình chiếu của
C trên AB .
a) Chứng minh rằng CA là tia phân giác của góc MCH .
b) Giả sử MA =a, MC = 2a . Tính AB và CH theo a .
Bài 3: Cho đường tròn (O1) tiếp xúc trong với đường tròn (O) tại A . Đường kính AB của đường tròn (O) cắt đường tròn (O1) tại điểm thứ hai C khác A . Từ B vẽ tiếp tuyến BP với đường tròn (O1) cắt đường tròn (O) tại Q .Chứng minh AP là phân giác của góc QAB
Bài 4 : Cho hai đường tròn tâm O , O1 tiếp xúc ngoài nhau tại A . Trên đường tròn (O) lấy hai điểm phân biệt B , C khác A. Các đường thẳng BA , CA cắt đường tròn (O1) tại P và Q . Chứng minh PQ (( BC .
Bài 5 : Cho tam giác ABC nội tiếp đường tròn (O) và
( AB < AC ) . Đường tròn (I) đi qua B và C , tiếp xúc với AB tại B cắt đường thẳng AC tại D .
Chứng minh rằng : OA ( BD .
Bài 6 : Cho nửa đường tròn (O
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Nguyễn Lê Hữu Thắng
Dung lượng: 235,00KB|
Lượt tài: 1
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)