KY THUAT CM BDT

Chia sẻ bởi Kiều Đình Phú | Ngày 12/10/2018 | 41

Chia sẻ tài liệu: KY THUAT CM BDT thuộc Đại số 7

Nội dung tài liệu:




Kỹ thuật sử dụng Bất đẳng thức Cô-Si

1. NHỮNG QUY TẮC CHUNG TRONG CHỨNG MINH BẤT ĐẲNG THỨC SỬ DỤNG BẤT ĐẲNG THỨC CÔ SI
Quy tắc song hành: hầu hết các BĐT đều có tính đối xứng do đó việc sử dụng các chứng minh một cách song hành, tuần tự sẽ giúp ta hình dung ra được kết quả nhanh chóng và định hướng cách giả nhanh hơn.
Quy tắc dấu bằng: dấu bằng “ = ” trong BĐT là rất quan trọng. Nó giúp ta kiểm tra tính đúng đắn của chứng minh. Nó định hướng cho ta phương pháp giải, dựa vào điểm rơi của BĐT. Chính vì vậy mà khi dạy cho học sinh ta rèn luyện cho học sinh có thói quen tìm điều kiện xảy ra dấu bằng mặc dù trong các kì thi học sinh có thể không trình bày phần này. Ta thấy được ưu điểm của dấu bằng đặc biệt trong phương pháp điểm rơi và phương pháp tách nghịch đảo trong kỹ thuật sử dụng BĐT Cô Si.
Quy tắc về tính đồng thời của dấu bằng: không chỉ học sinh mà ngay cả một số giáo viên khi mới nghiên cứu và chứng minh BĐT cũng thương rất hay mắc sai lầm này. Áp dụng liên tiếp hoặc song hành các BĐT nhưng không chú ý đến điểm rơi của dấu bằng. Một nguyên tắc khi áp dụng song hành các BĐT là điểm rơi phải được đồng thời xảy ra, nghĩa là các dấu “ = ” phải được cùng được thỏa mãn với cùng một điều kiện của biến.
Quy tắc biên: Cơ sở của quy tắc biên này là các bài toán quy hoạch tuyến tính, các bài toán tối ưu, các bài toán cực trị có điều kiện ràng buộc, giá trị lớn nhất nhỏ nhất của hàm nhiều biến trên một miền đóng. Ta biết rằng các giá trị lớn nhất, nhỏ nhất thường xảy ra ở các vị trí biên và các đỉnh nằm trên biên.
Quy tắc đối xứng: các BĐT thường có tính đối xứng vậy thì vai trò của các biến trong BĐT là như nhau do đó dấu “ = ” thường xảy ra tại vị trí các biến đó bằng nhau. Nếu bài toán có gắn hệ điều kiện đối xứng thì ta có thể chỉ ra dấu “ = ” xảy ra khi các biến bằng nhau và mang một giá trị cụ thể.
Chiều của BĐT : “ ≥ ”, “ ≤ ” cũng sẽ giúp ta định hướng được cách chứng minh: đánh giá từ TBC sang TBN và ngược lại
Trên là 5 quy tắc sẽ giúp ta có định hướng để chứng minh BĐT, học sinh sẽ thực sự hiểu được các quy tắc trên qua các ví dụ và bình luận ở phần sau.
2. BẤT ĐẲNG THỨC CÔ SI
(CAUCHY)
Dạng tổng quát (n số): (x1, x2, x3 ……..xn ≥ 0 ta có:
Dạng 1: 
Dạng 2: 
Dạng 3: 
Dấu “ = ” xảy ra khi và chỉ khi: 
Hệ quả 1:
Nếu:  thì: 
khi 
Hệ quả 2:
Nếu:  thì: 
khi 
Dạng cụ thể ( 2 số, 3 số ):
n = 2: ( x, y ≥ 0 khi đó:

n = 3: ( x, y, z ≥ 0 khi đó:


2.1 
 

2.2 
 

2.3 
 

2.4 
 

2.5 
 

2.6 
 

Bình luận:
Để học sinh dễ nhớ, ta nói: Trung bình cộng (TBC) ≥ Trung bình nhân (TBN).
Dạng 2 và dạng 3 khi đặt cạnh nhau có vẻ tầm thường nhưng lại giúp ta nhận dạng khi sử dụng BĐT Cô Si: (3) đánh giá từ TBN sang TBC khi không có cả căn thức.


3. CÁC KỸ THUẬT SỬ DỤNG

3.1 Đánh giá từ trung bình cộng sang trung bình nhân.
Đánh giá từ TBC sang TBN là đánh giá BĐT theo chiều “ ≥ ”. Đánh giá từ tổng sang tích.
Bài 1: Chứng minh rằng: 
Giải
Sai lầm thường gặp:
Sử dụng: ( x, y thì x2 - 2xy + y2 = ( x- y)2 ≥ 0 ( x2 + y2 ≥ 2xy. Do đó:
 (  (Sai)
Ví dụ:  ( 24 = 2.3.4 ≥ (-2)(-5).3 = 30 ( Sai )
Lời giải đúng:
Sử dụng BĐT Cô Si: x2 + y2 ≥ 2 = 2|xy| ta có:
((Đúng)
Bình luận:
Chỉ nhân các vế của BĐT cùng chiều ( kết quả được BĐT cùng chiều) khi và chỉ khi các vế cùng không âm.
Cần chú ý rằng: x2 + y2 ≥ 2
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Kiều Đình Phú
Dung lượng: 1,05MB| Lượt tài: 2
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)