Khong xem thi phi

Chia sẻ bởi Nguyễn Thế Đạt | Ngày 12/10/2018 | 45

Chia sẻ tài liệu: khong xem thi phi thuộc Đại số 7

Nội dung tài liệu:

Chuyên đề 1
Dãy Số viết theo qui luật - Dãy các phân số viết theo qui luật
A- Kiến thức cần nắm vững:
I. Dãy số viết theo qui luật:
1) Dãy cộng
1.1) Xét các dãy số sau:
a) Dãy số tự nhiên: 0; 1; 2; 3; 4;... (1)
b) Dãy số lẻ: 1; 3; 5; 7;... (2)
c) Dãy các số chẵn: 0; 2; 4; 6;.... (3)
d) Dãy các số tự nhiên lớn hơn 1 chia cho 3 dư 1: 4; 7; 10; 13;... (4)
Trong 4 dãy số trên, mỗi số hạng kể từ số hạng thứ 2, đều lớn hơn số hạng đứng liền trước nó cùng một số đơn vị:
+) Số đơn vị là 1 ở dãy (1)
+) Số đơn vị là 2 ở dãy (1) và (2)
+) Số đơn vị là 3 ở dãy (4)
Khi đó ta gọi dãy các trên là "dãy cộng"
1.2) Công thức tính số hạng thứ n của một dãy cộng (khi biết n và d)
- Xét dãy cộng  trong đó . Ta có:
; ;...
Tổng quát:  (I)
Trong đó : n gọi là số số hạng của dãy cộng
d hiệu giữa hai số hạng liên tiếp
Từ (I) ta có:  (II)
Công thức (II) giúp ta tính được số số hạng của một dãy cộng khi biết : Số hạng đầu , số hạng cuối  và hiệu d giữa hai số hạng liên tiếp.
1.3) Để tính tổng S các số hạng của dãy cộng: . Ta viết:

Nên 
Do đó:  (III)
Chú ý: Trường hợp đặc biệt tổng của n số tự nhiên liên tiếp bắt đàu từ 1 là

B- BÀI TẬP ÁP DỤNG
Bài 1: Tìm chữ số thứ 1000 khi viét liên tiếp liền nhau các số hạng của dãy số lẻ 1; 3; 5; 7;...
Bài 2: a) Tính tổng các số lẻ có hai chữ số
b) Tính tổng các số chẵn có hai chữ số
c) Tính:  với 
d) Tính:  với 
Bài 3: Có số hạng nào của dãy sau tận cùng bằng 2 hay không?

Hướng dẫn: Số hạng thứ n của dãy bằng:
Nếu số hạng thứ n của dãy có chữ số tận cùng bằng 2 thì n(n + 1) tận cùng bằng 4. Điều này vô lí vì n(n + 1) chỉ tận cùng bằng 0, hoặc 2, hoặc 6.
Bài 4: a) Viết liên tiếp các số hạng của dãy số tự nhiên từ 1 đến 100 tạo thành một số A. Tính tổng các chữ số của A
b) Cũng hỏi như trên nếu viết từ 1 đến 1000000
Hướng dẫn: a) ta bổ sung thêm chữ số 0 vào vị trí đầu tiên của dãy số (không làm thay đổi kết quả). Tạm chưa xét số 100. Từ 0 đến 99 có 100 số, ghép thành 50 cặp: 0 và 99; 1 và 98; 2 và 97;… mỗi cặp có tổng các chữ số bằng 18. Tổng các chữ số của 50 cặp bằng: 18.50 = 900. Thêm số 100 có tổng các chữ số bằng 1. ĐS: 901
b) Tương tự: ĐS: 27000001
Bài 5: Cho 
Tính  ?
Hướng dẫn: Số số hạng của S1,..., S99 theo thứ tự bằng 2; 3; 4; 5; …100
ĐS: S100 = 515100
Bài 6: Khi phân tích ra thừa số nguyên tố, số 100! chứa thừa số nguyên tố 7 với số mũ băng bao nhiêu?
Bài 7: Tính số hạng thứ 50 của các dãy sau:
a) 1.6; 2.7; 3.8; ...
b) 1.4; 4.7; 7.10;...
Bài 8: Cho ; 
Tính 
Bài 9: Tính các tổng sau:

Bài 10: Tổng quát của bài 8
Tính : a)  , với ()
b) , với ()
c)  , với ()
Bìa 11: Cho . Chứng minh rằng: .
Bài 12: Tính giá trị của biểu thức:

(NCPTT6T1)
SUY NGHĨ TRÊN MỖI BÀI TOÁN
Giải hàng trăm bài toán mà chỉ cốt tìm ra đáp số và dừng lại ở đó
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Nguyễn Thế Đạt
Dung lượng: 240,00KB| Lượt tài: 2
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)