De va dap an thi vao 10 nam 2013
Chia sẻ bởi Huỳnh Minh Trọng |
Ngày 14/10/2018 |
32
Chia sẻ tài liệu: de va dap an thi vao 10 nam 2013 thuộc Vật lí 6
Nội dung tài liệu:
SỞ GIÁO DỤC VÀ ĐÀO TẠO
TỈNH NINH BÌNH
KÌ THI TUYỂN SINH LỚP 10 THPT
NĂM HỌC 2013- 2014
Môn thi: TOÁN
Ngày thi 6 tháng 7 năm 2013
Thời gian làm bài: 120 phút
Đề thi gồm 5 câu trong 01 trang
Câu 1 (2 điểm).
Giải bất phương trình x – 3 > 0
Tìm điều kiện của x để biểu thức xác định.
Giải hệ phương trình
Câu 2 (2,0 điểm). Rút gọn các biểu thức sau:
1. .
2. (với x)
Câu 3 (2,0 điểm). Trong mặt phẳng tọa độ Oxy cho parabol (P): y = x2 và đường thẳng d: y = (k-1)x + 4 (k là tham số).
Khi k = -2, tìm tọa độ giao điểm của đường thẳng d và parabol (P).
Chứng minh rằng với mọi giá trị của k thì đường thẳng d luôn cắt parabol (P) tại hai điểm phân biệt. Gọi , là tung độ các giao điểm của đường thẳng d và parabol (P). Tìm k sao cho + = .
Câu 4 (3,0 điểm). Cho đường tròn tâmO, bán kính R. M là một điểm nằm ngoài đường tròn. Từ M kẻ hai tiếp tuyến MA và MB đển đường tròn (A, B là hai tiếp điểm). Gọi E là giao điểm của AB và OM.
Chứng minh tứ giác MAOB là tứ giác nội tiếp.
Tính diện tích tam giác AMB, biết OM = 5 và R = 3.
Kẻ Mx nằm trong tam góc AMO cát đường tròn tại hai điểm phân biệt C và D (C nằm giữa M và D). Chứng minh rằng EA là phân giác của góc CED.
Câu 5 (1,0 điểm). Cho các số thực dương x và y thỏa mãn . Tính giá trị của biểu thức .
------ HẾT -----
HD:
Câu 4:
3. đồng dạng
MC.MD= MA2
MAO vuông tại A, Đường cao AE
ME.MO = MA2
ME.MO = MC.MD(= MA2)
, mà MDO và MEC có góc M chung nên hai tam giác đồng dạng
MEC = MDO
Từ đó suy ra tứ giác ECDO nội tiếp (góc ngoài tại 1 đỉnh bằng góc trong của đỉnh đối diện)
OED = OCD = ODC = CEM
CEA = DEA ( cùng phụ với 2 góc bằng nhau)
EA là phân giác của CED
Câu 5: Ta có
Vậy
SỞ GIÁO DỤC & ĐÀO TẠO
AN GIANG
---------------
ĐỀ CHÍNH THỨC
SBD……PHÒNG………..
ĐỀ THI TUYỂN SINH VÀO LỚP 10
Năm học 2013-2014
--------------------
Môn: TOÁN
Khóa ngày 1 -7 -2013
Thời gian làm bài : 120 phút
(Không kể thời gian phát đề)
Ngày thi: 2-7-2013
Bài 1. (3,0 điểm)
a. Thực hiện phép tính A =
b. Tìm x dương , biết
c. Giải hệ phương trình :
Bài 2. (2,0 điểm)
Cho hàm số y = x2 có đồ thị là Parabol ( P )
a) Vẽ đồ thị hàm số
b) Xác định a , b sao cho đường thẳng y = ax +b song song với đường thẳng y = – x +5 và cắt Parabol (P) tại điểm có hoành độ bằng 1 .
Bài 3. (2,0 điểm)
Cho phương trình x2 – (2m +1) x + m2 + m = 0 (*)
Khi m = 0 giải phương trình (*)
Tìm m để phương trình (*) có hai nghiệm phân biệt x1; x2 và cả hai nghiệm này đều là nghiệm của phương trình x3 +x2 = 0
Bài 4. (3,0 điểm)
Cho đường tròn tâm O đường kính AB ; C là một điểm trên đường tròn sao cho số đo cung AC gấp đôi số đo cung CB.Tiếp tuyến tại B với đường tròn (O) cắt AC tại E.Gọi I là trung điểm của dây AC.
a.Chứng minh rằng tứ giác IOBE nội tiếp.
b.Chứng minh rằng EB2 = EC . EA .
c.Biết bán kính đường tròn (O) bằng 2 cm, tính diện tích tam giác ABE .
------ Hết------
SỞ GIÁO DỤC VÀ ĐÀO TẠO
BẮC GIANG
ĐỀ CHÍNH THỨC
ĐỀ THI TUYỂN SINH LỚP 10 THPT
NĂM HỌC : 2013-2014
MÔN : TOÁN
NGÀY 30/06/
TỈNH NINH BÌNH
KÌ THI TUYỂN SINH LỚP 10 THPT
NĂM HỌC 2013- 2014
Môn thi: TOÁN
Ngày thi 6 tháng 7 năm 2013
Thời gian làm bài: 120 phút
Đề thi gồm 5 câu trong 01 trang
Câu 1 (2 điểm).
Giải bất phương trình x – 3 > 0
Tìm điều kiện của x để biểu thức xác định.
Giải hệ phương trình
Câu 2 (2,0 điểm). Rút gọn các biểu thức sau:
1. .
2. (với x)
Câu 3 (2,0 điểm). Trong mặt phẳng tọa độ Oxy cho parabol (P): y = x2 và đường thẳng d: y = (k-1)x + 4 (k là tham số).
Khi k = -2, tìm tọa độ giao điểm của đường thẳng d và parabol (P).
Chứng minh rằng với mọi giá trị của k thì đường thẳng d luôn cắt parabol (P) tại hai điểm phân biệt. Gọi , là tung độ các giao điểm của đường thẳng d và parabol (P). Tìm k sao cho + = .
Câu 4 (3,0 điểm). Cho đường tròn tâmO, bán kính R. M là một điểm nằm ngoài đường tròn. Từ M kẻ hai tiếp tuyến MA và MB đển đường tròn (A, B là hai tiếp điểm). Gọi E là giao điểm của AB và OM.
Chứng minh tứ giác MAOB là tứ giác nội tiếp.
Tính diện tích tam giác AMB, biết OM = 5 và R = 3.
Kẻ Mx nằm trong tam góc AMO cát đường tròn tại hai điểm phân biệt C và D (C nằm giữa M và D). Chứng minh rằng EA là phân giác của góc CED.
Câu 5 (1,0 điểm). Cho các số thực dương x và y thỏa mãn . Tính giá trị của biểu thức .
------ HẾT -----
HD:
Câu 4:
3. đồng dạng
MC.MD= MA2
MAO vuông tại A, Đường cao AE
ME.MO = MA2
ME.MO = MC.MD(= MA2)
, mà MDO và MEC có góc M chung nên hai tam giác đồng dạng
MEC = MDO
Từ đó suy ra tứ giác ECDO nội tiếp (góc ngoài tại 1 đỉnh bằng góc trong của đỉnh đối diện)
OED = OCD = ODC = CEM
CEA = DEA ( cùng phụ với 2 góc bằng nhau)
EA là phân giác của CED
Câu 5: Ta có
Vậy
SỞ GIÁO DỤC & ĐÀO TẠO
AN GIANG
---------------
ĐỀ CHÍNH THỨC
SBD……PHÒNG………..
ĐỀ THI TUYỂN SINH VÀO LỚP 10
Năm học 2013-2014
--------------------
Môn: TOÁN
Khóa ngày 1 -7 -2013
Thời gian làm bài : 120 phút
(Không kể thời gian phát đề)
Ngày thi: 2-7-2013
Bài 1. (3,0 điểm)
a. Thực hiện phép tính A =
b. Tìm x dương , biết
c. Giải hệ phương trình :
Bài 2. (2,0 điểm)
Cho hàm số y = x2 có đồ thị là Parabol ( P )
a) Vẽ đồ thị hàm số
b) Xác định a , b sao cho đường thẳng y = ax +b song song với đường thẳng y = – x +5 và cắt Parabol (P) tại điểm có hoành độ bằng 1 .
Bài 3. (2,0 điểm)
Cho phương trình x2 – (2m +1) x + m2 + m = 0 (*)
Khi m = 0 giải phương trình (*)
Tìm m để phương trình (*) có hai nghiệm phân biệt x1; x2 và cả hai nghiệm này đều là nghiệm của phương trình x3 +x2 = 0
Bài 4. (3,0 điểm)
Cho đường tròn tâm O đường kính AB ; C là một điểm trên đường tròn sao cho số đo cung AC gấp đôi số đo cung CB.Tiếp tuyến tại B với đường tròn (O) cắt AC tại E.Gọi I là trung điểm của dây AC.
a.Chứng minh rằng tứ giác IOBE nội tiếp.
b.Chứng minh rằng EB2 = EC . EA .
c.Biết bán kính đường tròn (O) bằng 2 cm, tính diện tích tam giác ABE .
------ Hết------
SỞ GIÁO DỤC VÀ ĐÀO TẠO
BẮC GIANG
ĐỀ CHÍNH THỨC
ĐỀ THI TUYỂN SINH LỚP 10 THPT
NĂM HỌC : 2013-2014
MÔN : TOÁN
NGÀY 30/06/
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Huỳnh Minh Trọng
Dung lượng: 4,10MB|
Lượt tài: 3
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)