đề thi toán vào 10 - 2011-2012
Chia sẻ bởi Phạm Nguyễn Sơn Tùng |
Ngày 12/10/2018 |
42
Chia sẻ tài liệu: đề thi toán vào 10 - 2011-2012 thuộc Đại số 7
Nội dung tài liệu:
SỞ GD&ĐT THÀNH PHỐ HÀ NỘI
ĐỀ THI TUYỂN SINH VÀO LỚP 10
Môn thi : Toán
Ngày thi : 22 tháng 6 năm 2011
Thời gian làm bài: 120 phút
Bài I (2,5 điểm)
Cho Với .
1) Rút gọn biểu thức A.
2) Tính giá trị của A khi x = 9.
3) Tìm x để .
Bài II (2,5 điểm)
Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình:
Một đội xe theo kế hoạch chở hết 140 tấn hàng trong một số ngày quy định. Do mỗi ngày đội đó chở vượt mức 5 tấn nên đội đã hoàn thành kế hoạch sớm hơn thời gian quy định 1 ngày và chở thêm được 10 tấn. Hỏi theo kế hoạch đội xe chở hàng hết bao nhiêu ngày?
Bài III (1,0 điểm)
Cho Parabol (P): và đường thẳng (d): .
1) Tìm toạ độ các giao điểm của Parabol (P) và đường thẳng (d) khi m = 1.
2) Tìm m để đường thẳng (d) cắt Parabol (P) tại hai điểm nằm về hai phía của trục tung.
Bài IV (3,5 điểm)
Cho đường tròn tâm O, đường kính AB = 2R. Gọi d1 và d2 là hai tiếp tuyến của đường tròn (O) tại hai điểm A và B.Gọi I là trung điểm của OA và E là điểm thuộc đường tròn (O) (E không trùng với A và B). Đường thẳng d đi qua điểm E và vuông góc với EI cắt hai đường thẳng d1 và d2 lần lượt tại M, N.
1) Chứng minh AMEI là tứ giác nội tiếp.
2) Chứng minh và .
3) Chứng minh AM.BN = AI.BI .
4) Gọi F là điểm chính giữa của cung AB không chứa E của đường tròn (O). Hãy tính diện tích của tam giác MIN theo R khi ba điểm E, I, F thẳng hàng.
Bài V (0,5 điểm)
Với x > 0, tìm giá trị nhỏ nhất của biểu thức: .
........................................Hết........................................
GỢI Ý - ĐÁP ÁN
Bài 1:
1/ Rút gọn: ĐK:
(Với )
2/ Với x = 9 Thỏa mãn , nên A xác định được, ta có . Vậy
3/ Ta có: ĐK
Kết hợp với
Vậy với 0 ≤ x < 100 và x ≠ 25 thì A < 1/3
Bài 2
CÁCH 1:
Gọi thời gian đội xe chở hết hàng theo kế hoạch là x(ngày) (ĐK: x > 1)
Thì thời gian thực tế đội xe đó chở hết hàng là x – 1 (ngày)
Mỗi ngày theo kế hoạch đội xe đó phải chở được (tấn)
Thực tế đội đó đã chở được 140 + 10 = 150(tấn) nên mỗi ngày đội đó chở được (tấn)
Vì thực tế mỗi ngày đội đó chở vượt mức 5 tấn, nên ta có pt:
(150x – 140x + 140 = 5x2 -5x
( 5x2 -5x – 10x - 140 = 0
( 5x2 -15x - 140 = 0
( x2 -3x - 28 = 0
Giải ra x = 7 (T/M) và x = -4 (loại)
Vậy thời gian đội xe đó chở hết hàng theo kế hoạch là 7 ngày
CÁCH 2:
Gọi khối lượng hàng chở theo định mức trong 1 ngày của đội là x (tấn) ( x > 0)
Số ngày quy định là (ngày)
Do chở vượt mức nên số ngày đội đã chở là (ngày)
Khối lượng hàng đội đã chở được là 140 + 10 = 150 (tấn)
Theo bài ra ta có pt:
Giải ra x = 20 (T/M)và x = - 35 ( loại)
Vậy số ngày đội phải chở theo kế hoạch là 140:20=7 ( ngày)
Bài 3:
1/ Với m = 1 ta có (d): y = 2x + 8
Phương trình hoành độ điểm chung của (P) va (d) là
x2 = 2x + 8
<=> x2 – 2x – 8 = 0
Giải ra x = 4 => y = 16
x = -2 => y = 4
Tọa độ các giao điểm của (P) và (d) là (4 ; 16) và (-2 ; 4)
2/ Phương trình hoành độ điểm chung của (d) và (P) là
x2 – 2x + m2 – 9 = 0 (1)
Để (d) cắt (P) tại hai điểm phân biệt nằm về hai phía của trục tung thì phương trình (1) có hai nghiệm trái dấu
ĐỀ THI TUYỂN SINH VÀO LỚP 10
Môn thi : Toán
Ngày thi : 22 tháng 6 năm 2011
Thời gian làm bài: 120 phút
Bài I (2,5 điểm)
Cho Với .
1) Rút gọn biểu thức A.
2) Tính giá trị của A khi x = 9.
3) Tìm x để .
Bài II (2,5 điểm)
Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình:
Một đội xe theo kế hoạch chở hết 140 tấn hàng trong một số ngày quy định. Do mỗi ngày đội đó chở vượt mức 5 tấn nên đội đã hoàn thành kế hoạch sớm hơn thời gian quy định 1 ngày và chở thêm được 10 tấn. Hỏi theo kế hoạch đội xe chở hàng hết bao nhiêu ngày?
Bài III (1,0 điểm)
Cho Parabol (P): và đường thẳng (d): .
1) Tìm toạ độ các giao điểm của Parabol (P) và đường thẳng (d) khi m = 1.
2) Tìm m để đường thẳng (d) cắt Parabol (P) tại hai điểm nằm về hai phía của trục tung.
Bài IV (3,5 điểm)
Cho đường tròn tâm O, đường kính AB = 2R. Gọi d1 và d2 là hai tiếp tuyến của đường tròn (O) tại hai điểm A và B.Gọi I là trung điểm của OA và E là điểm thuộc đường tròn (O) (E không trùng với A và B). Đường thẳng d đi qua điểm E và vuông góc với EI cắt hai đường thẳng d1 và d2 lần lượt tại M, N.
1) Chứng minh AMEI là tứ giác nội tiếp.
2) Chứng minh và .
3) Chứng minh AM.BN = AI.BI .
4) Gọi F là điểm chính giữa của cung AB không chứa E của đường tròn (O). Hãy tính diện tích của tam giác MIN theo R khi ba điểm E, I, F thẳng hàng.
Bài V (0,5 điểm)
Với x > 0, tìm giá trị nhỏ nhất của biểu thức: .
........................................Hết........................................
GỢI Ý - ĐÁP ÁN
Bài 1:
1/ Rút gọn: ĐK:
(Với )
2/ Với x = 9 Thỏa mãn , nên A xác định được, ta có . Vậy
3/ Ta có: ĐK
Kết hợp với
Vậy với 0 ≤ x < 100 và x ≠ 25 thì A < 1/3
Bài 2
CÁCH 1:
Gọi thời gian đội xe chở hết hàng theo kế hoạch là x(ngày) (ĐK: x > 1)
Thì thời gian thực tế đội xe đó chở hết hàng là x – 1 (ngày)
Mỗi ngày theo kế hoạch đội xe đó phải chở được (tấn)
Thực tế đội đó đã chở được 140 + 10 = 150(tấn) nên mỗi ngày đội đó chở được (tấn)
Vì thực tế mỗi ngày đội đó chở vượt mức 5 tấn, nên ta có pt:
(150x – 140x + 140 = 5x2 -5x
( 5x2 -5x – 10x - 140 = 0
( 5x2 -15x - 140 = 0
( x2 -3x - 28 = 0
Giải ra x = 7 (T/M) và x = -4 (loại)
Vậy thời gian đội xe đó chở hết hàng theo kế hoạch là 7 ngày
CÁCH 2:
Gọi khối lượng hàng chở theo định mức trong 1 ngày của đội là x (tấn) ( x > 0)
Số ngày quy định là (ngày)
Do chở vượt mức nên số ngày đội đã chở là (ngày)
Khối lượng hàng đội đã chở được là 140 + 10 = 150 (tấn)
Theo bài ra ta có pt:
Giải ra x = 20 (T/M)và x = - 35 ( loại)
Vậy số ngày đội phải chở theo kế hoạch là 140:20=7 ( ngày)
Bài 3:
1/ Với m = 1 ta có (d): y = 2x + 8
Phương trình hoành độ điểm chung của (P) va (d) là
x2 = 2x + 8
<=> x2 – 2x – 8 = 0
Giải ra x = 4 => y = 16
x = -2 => y = 4
Tọa độ các giao điểm của (P) và (d) là (4 ; 16) và (-2 ; 4)
2/ Phương trình hoành độ điểm chung của (d) và (P) là
x2 – 2x + m2 – 9 = 0 (1)
Để (d) cắt (P) tại hai điểm phân biệt nằm về hai phía của trục tung thì phương trình (1) có hai nghiệm trái dấu
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Phạm Nguyễn Sơn Tùng
Dung lượng: 184,00KB|
Lượt tài: 2
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)