Đề thi Toán 8 hay nhất
Chia sẻ bởi Trân Đình Lâm |
Ngày 17/10/2018 |
65
Chia sẻ tài liệu: Đề thi Toán 8 hay nhất thuộc Hóa học 8
Nội dung tài liệu:
ĐỀ THI SỐ 1
Câu 1: (4,0 điểm)
Phân tích các đa thức sau thành nhân tử :
a) 3x2 – 7x + 2; b) a(x2 + 1) – x(a2 + 1).
Câu 2: (5,0 điểm)
Cho biểu thức :
Tìm ĐKXĐ rồi rút gọn biểu thức A ?
Tìm giá trị của x để A > 0?
Tính giá trị của A trong trường hợp : |x - 7| = 4.
Câu 3: (5,0 điểm)
Tìm x,y,z thỏa mãn phương trình sau :
9x2 + y2 + 2z2 – 18x + 4z - 6y + 20 = 0.
Cho và . Chứng minh rằng : .
Câu 4: (6,0 điểm)
Cho hình bình hành ABCD có đường chéo AC lớn hơn đường chéo BD. Gọi E, F lần lượt là hình chiếu của B và D xuống đường thẳng AC. Gọi H và K lần lượt là hình chiếu của C xuống đường thẳng AB và AD.
Tứ giác BEDF là hình gì ? Hãy chứng minh điều đó ?
Chứng minh rằng : CH.CD = CB.CK
Chứng minh rằng : AB.AH + AD.AK = AC2.
HƯỚNG DẪN CHẤM THI
Nội dung đáp án
Điểm
Bài 1
a
2,0
3x2 – 7x + 2 = 3x2 – 6x – x + 2 =
1,0
= 3x(x -2) – (x - 2)
0,5
= (x - 2)(3x - 1).
0,5
b
2,0
a(x2 + 1) – x(a2 + 1) = ax2 + a – a2x – x =
1,0
= ax(x - a) – (x - a) =
0,5
= (x - a)(ax - 1).
0,5
Bài 2:
5,0
g
3,0
ĐKXĐ :
1,0
1,0
0,5
0,25
Vậy với thì .
0,25
h
1,0
Với
0,25
0,25
0,25
Vậy với x > 3 thì A > 0.
0,25
i
1,0
0,5
0,25
Với x = 11 thì A =
0,25
Bài 3
5,0
a
2,5
9x2 + y2 + 2z2 – 18x + 4z - 6y + 20 = 0
(9x2 – 18x + 9) + (y2 – 6y + 9) + 2(z2 + 2z + 1) = 0
1,0
9(x - 1)2 + (y - 3)2 + 2 (z + 1)2 = 0 (*)
0,5
Do :
0,5
Nên : (*) x = 1; y = 3; z = -1
0,25
Vậy (x,y,z) = (1,3,-1).
0,25
b
2,5
Từ :
0,5
ayz + bxz + cxy = 0
0,25
Ta có :
0,5
0,5
0,5
0,25
Bài 4
6,0
0,25
a
2,0
Ta có : BEAC (gt); DFAC (gt) => BE // DF
0,5
Chứng minh :
0,5
=> BE = DF
0,25
Suy ra : Tứ giác : BEDF là hình bình hành.
0,25
b
2,0
Ta có:
0,5
Chứng minh :
1,0
0,5
b,
1,75
Chứng minh :
0,25
0,25
Chứng minh :
0,25
0,25
Mà : CD = AB
0,5
Suy ra :
Câu 1: (4,0 điểm)
Phân tích các đa thức sau thành nhân tử :
a) 3x2 – 7x + 2; b) a(x2 + 1) – x(a2 + 1).
Câu 2: (5,0 điểm)
Cho biểu thức :
Tìm ĐKXĐ rồi rút gọn biểu thức A ?
Tìm giá trị của x để A > 0?
Tính giá trị của A trong trường hợp : |x - 7| = 4.
Câu 3: (5,0 điểm)
Tìm x,y,z thỏa mãn phương trình sau :
9x2 + y2 + 2z2 – 18x + 4z - 6y + 20 = 0.
Cho và . Chứng minh rằng : .
Câu 4: (6,0 điểm)
Cho hình bình hành ABCD có đường chéo AC lớn hơn đường chéo BD. Gọi E, F lần lượt là hình chiếu của B và D xuống đường thẳng AC. Gọi H và K lần lượt là hình chiếu của C xuống đường thẳng AB và AD.
Tứ giác BEDF là hình gì ? Hãy chứng minh điều đó ?
Chứng minh rằng : CH.CD = CB.CK
Chứng minh rằng : AB.AH + AD.AK = AC2.
HƯỚNG DẪN CHẤM THI
Nội dung đáp án
Điểm
Bài 1
a
2,0
3x2 – 7x + 2 = 3x2 – 6x – x + 2 =
1,0
= 3x(x -2) – (x - 2)
0,5
= (x - 2)(3x - 1).
0,5
b
2,0
a(x2 + 1) – x(a2 + 1) = ax2 + a – a2x – x =
1,0
= ax(x - a) – (x - a) =
0,5
= (x - a)(ax - 1).
0,5
Bài 2:
5,0
g
3,0
ĐKXĐ :
1,0
1,0
0,5
0,25
Vậy với thì .
0,25
h
1,0
Với
0,25
0,25
0,25
Vậy với x > 3 thì A > 0.
0,25
i
1,0
0,5
0,25
Với x = 11 thì A =
0,25
Bài 3
5,0
a
2,5
9x2 + y2 + 2z2 – 18x + 4z - 6y + 20 = 0
(9x2 – 18x + 9) + (y2 – 6y + 9) + 2(z2 + 2z + 1) = 0
1,0
9(x - 1)2 + (y - 3)2 + 2 (z + 1)2 = 0 (*)
0,5
Do :
0,5
Nên : (*) x = 1; y = 3; z = -1
0,25
Vậy (x,y,z) = (1,3,-1).
0,25
b
2,5
Từ :
0,5
ayz + bxz + cxy = 0
0,25
Ta có :
0,5
0,5
0,5
0,25
Bài 4
6,0
0,25
a
2,0
Ta có : BEAC (gt); DFAC (gt) => BE // DF
0,5
Chứng minh :
0,5
=> BE = DF
0,25
Suy ra : Tứ giác : BEDF là hình bình hành.
0,25
b
2,0
Ta có:
0,5
Chứng minh :
1,0
0,5
b,
1,75
Chứng minh :
0,25
0,25
Chứng minh :
0,25
0,25
Mà : CD = AB
0,5
Suy ra :
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Trân Đình Lâm
Dung lượng: 3,27MB|
Lượt tài: 0
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)