De thi hoc sinh gioi casio
Chia sẻ bởi Đặng Trần Ngọc Tiến |
Ngày 17/10/2018 |
23
Chia sẻ tài liệu: de thi hoc sinh gioi casio thuộc Hóa học 8
Nội dung tài liệu:
UBND HUYỆN QUẾ SƠN
PHÒNG GD&ĐT
KỲ THI HỌC SINH GIỎI THỰC HÀNH
Môn: Giải toán trên máy CASIO lớp 8
Thời gian: 120 phút (Không kể thời gian giao đề)
HƯỚNG DẪN CHẤM
Câu 1: (2,0 điểm)
Tính tổng S = 20082- 20072 + 20062- 20052 + … + 22- 1
Cách tính:
- S = (20082- 20072 )+ (20062- 20052 )+ … + (22- 1)
- = (2008 + 2007)(2008 - 2007) + ... + (2+1)(2-1)
- = 2008 + 2007 + ...+ 3 + 2 + 1 = 2008(2008+1)/2
(Mỗi ý cho 0,5 điểm)
Kết quả:
2017036
(0,5 điểm)
Câu 2: (2,0 điểm)
Cho số hữu tỉ biễu diễn dưới dạng số thập phân vô hạn tuần hoàn E = 1,23507507507507507... Hãy biến đổi E thành dạng phân số tối giản.
Cách tính:
E = 1,23 + 0, 00(507)
= 1,23 + 0,(507). 10-2
=
(Mỗi ý cho 0,5 điểm)
Kết quả:
(0,5 điểm)
Câu 3: (2,0 điểm)
Tìm số dư trong phép chia 9876543210123456789 cho 987654 và điền kết quả vào ô trống.
Cách giải:
Phân đoạn số bị chia để tính số dư.
- 987654 chia 987654 dư 0
- 3210123456 chia 987654 dư 247956
- 247956789 chia 987654 dư 55635
(Mỗi ý cho 0,5 điểm)
Kết quả:
55635
(0,5 điểm)
Câu 4: (2,0 điểm)
Tìm a, b, c, d, e biết:
Kết quả:
a =1; b = 2; c =3; d =4;
e = 5
(2,0 điểm)
Câu 5:(2,0 điểm)
Cho : x3 + y3 = 10,1003 và x6 + y6 = 200,2006. Hãy tính gần đúng giá trị biểu thức x9 + y9.
Cách tính:
- Đặt a = x3 ; b = y3 => cần tính a3+b3 .
- Tính được a3+b3 = (a+b)(a2+b2-ab)
- = (a+b)(a2+b2-(a+b)2/2)
(Mỗi ý cho 0,5 điểm)
Kết quả:
( 495,8466542
(0,5 điểm)
Câu 6: (2,0 điểm)
Tìm nghiệm của phương trình viết dưới dạng phân số:
Kết quả:
(2,0 điểm)
Câu 7: (2,0 điểm)
Cho đa thức f(x)=6x3 - 7x2 -16x + m. f(x) chia hết cho 2x-5 tìm số dư phép chia f(x) cho 3x-2.
- f(x) chia hết cho 2x-5 nên trong đó p(x)= 6x3-7x2-16x
- Kết quả m = -10. Thay m=-10 ta có f(x)=6x3-7x2-16x-10;
(Mỗi ý cho 0,5 điểm)
Kết quả:
M = -10
r = -22
(1,0 điểm)
Câu 8: (3,0 điểm)
Cho dãy số xác định bởi công thức x 1 = 0,25
a. Viết qui trình ấn phím tính xn ?
b. Tính x5; x10; x15; x20 ?
a. Qui trình ấn phím:
- 0,25 =
- ( x x 4 + 2009 )/ ( x + 1)
- Ấn = liên tục để có xn
(0,25 – 0,50 – 0,25 )
Kết quả:
x5 = 4.134898162
x10 = 113.8046148
x15 = 4.154845317
x20 = 113.7863311
(Mỗi ý 0,5 điểm)
Câu 9: (3,0 điểm)
Dãy phi-bô-na-xi bậc ba {un } được xác định: u1 = u2 = u3 = 1
un + 1 = un + un-1 +un-2.
a. Lập qui trình tính un.
b. Tính u10; u20 ; u30; u40;
a. Lập qui trình tính un:
- 1 shift sto A, 1 shift sto B, 1 shift sto C
- alpha
PHÒNG GD&ĐT
KỲ THI HỌC SINH GIỎI THỰC HÀNH
Môn: Giải toán trên máy CASIO lớp 8
Thời gian: 120 phút (Không kể thời gian giao đề)
HƯỚNG DẪN CHẤM
Câu 1: (2,0 điểm)
Tính tổng S = 20082- 20072 + 20062- 20052 + … + 22- 1
Cách tính:
- S = (20082- 20072 )+ (20062- 20052 )+ … + (22- 1)
- = (2008 + 2007)(2008 - 2007) + ... + (2+1)(2-1)
- = 2008 + 2007 + ...+ 3 + 2 + 1 = 2008(2008+1)/2
(Mỗi ý cho 0,5 điểm)
Kết quả:
2017036
(0,5 điểm)
Câu 2: (2,0 điểm)
Cho số hữu tỉ biễu diễn dưới dạng số thập phân vô hạn tuần hoàn E = 1,23507507507507507... Hãy biến đổi E thành dạng phân số tối giản.
Cách tính:
E = 1,23 + 0, 00(507)
= 1,23 + 0,(507). 10-2
=
(Mỗi ý cho 0,5 điểm)
Kết quả:
(0,5 điểm)
Câu 3: (2,0 điểm)
Tìm số dư trong phép chia 9876543210123456789 cho 987654 và điền kết quả vào ô trống.
Cách giải:
Phân đoạn số bị chia để tính số dư.
- 987654 chia 987654 dư 0
- 3210123456 chia 987654 dư 247956
- 247956789 chia 987654 dư 55635
(Mỗi ý cho 0,5 điểm)
Kết quả:
55635
(0,5 điểm)
Câu 4: (2,0 điểm)
Tìm a, b, c, d, e biết:
Kết quả:
a =1; b = 2; c =3; d =4;
e = 5
(2,0 điểm)
Câu 5:(2,0 điểm)
Cho : x3 + y3 = 10,1003 và x6 + y6 = 200,2006. Hãy tính gần đúng giá trị biểu thức x9 + y9.
Cách tính:
- Đặt a = x3 ; b = y3 => cần tính a3+b3 .
- Tính được a3+b3 = (a+b)(a2+b2-ab)
- = (a+b)(a2+b2-(a+b)2/2)
(Mỗi ý cho 0,5 điểm)
Kết quả:
( 495,8466542
(0,5 điểm)
Câu 6: (2,0 điểm)
Tìm nghiệm của phương trình viết dưới dạng phân số:
Kết quả:
(2,0 điểm)
Câu 7: (2,0 điểm)
Cho đa thức f(x)=6x3 - 7x2 -16x + m. f(x) chia hết cho 2x-5 tìm số dư phép chia f(x) cho 3x-2.
- f(x) chia hết cho 2x-5 nên trong đó p(x)= 6x3-7x2-16x
- Kết quả m = -10. Thay m=-10 ta có f(x)=6x3-7x2-16x-10;
(Mỗi ý cho 0,5 điểm)
Kết quả:
M = -10
r = -22
(1,0 điểm)
Câu 8: (3,0 điểm)
Cho dãy số xác định bởi công thức x 1 = 0,25
a. Viết qui trình ấn phím tính xn ?
b. Tính x5; x10; x15; x20 ?
a. Qui trình ấn phím:
- 0,25 =
- ( x x 4 + 2009 )/ ( x + 1)
- Ấn = liên tục để có xn
(0,25 – 0,50 – 0,25 )
Kết quả:
x5 = 4.134898162
x10 = 113.8046148
x15 = 4.154845317
x20 = 113.7863311
(Mỗi ý 0,5 điểm)
Câu 9: (3,0 điểm)
Dãy phi-bô-na-xi bậc ba {un } được xác định: u1 = u2 = u3 = 1
un + 1 = un + un-1 +un-2.
a. Lập qui trình tính un.
b. Tính u10; u20 ; u30; u40;
a. Lập qui trình tính un:
- 1 shift sto A, 1 shift sto B, 1 shift sto C
- alpha
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Đặng Trần Ngọc Tiến
Dung lượng: 211,50KB|
Lượt tài: 0
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)