Đề thi chọn HSG

Chia sẻ bởi Nguyễn Thị Trung | Ngày 12/10/2018 | 63

Chia sẻ tài liệu: Đề thi chọn HSG thuộc Đại số 7

Nội dung tài liệu:

Đề số 1:
đề thi học sinh giỏi huyện
Môn Toán Lớp 7
(Thời gian làm bài 120 phút)
Bài 1. Tìm giá trị n nguyên dương:
a) b) 27 < 3n < 243
Bài 2. Thực hiện phép tính:

Bài 3. a) Tìm x biết:
b) Tìm giá trị nhỏ nhất của A Khi x thay đổi
Bài 4. Hiện nay hai kim đồng hồ chỉ 10 giờ. Sau ít nhất bao lâu thì 2 kim đồng hồ nằm đối diện nhau trên một đường thẳng.
Bài 5. Cho tam giác vuông ABC ( A = 1v), đường cao AH, trung tuyến AM. Trên tia đối tia MA lấy điểm D sao cho DM = MA. Trên tia đối tia CD lấy điểm I sao cho CI = CA, qua I vẽ đường thẳng song song với AC cắt đường thẳng AH tại E. Chứng minh: AE = BC

Đáp án đề 1toán 7
Bài 1. Tìm giá trị n nguyên dương: (4 điểm mỗi câu 2 điểm)
a) => 24n-3 = 2n => 4n – 3 = n => n = 1
b) 27 < 3n < 243 => 33 < 3n < 35 => n = 4
Bài 2. Thực hiện phép tính: (4 điểm)

=
=
Bài 3. (4 điểm mỗi câu 2 điểm)
a) Tìm x biết:
Ta có: x + 2 0 => x - 2.
+ Nếu x - thì => 2x + 3 = x + 2 => x = - 1 (Thoả mãn)
+ Nếu - 2 x < - Thì => - 2x - 3 = x + 2 => x = - Thoả mãn)
+ Nếu - 2 > x Không có giá trị của x thoả mãn
b) Tìm giá trị nhỏ nhất của A Khi x thay đổi
+ Nếu x < 2006 thì: A = - x + 2006 + 2007 – x = - 2x + 4013
Khi đó: - x > -2006 => - 2x + 4013 > – 4012 + 4013 = 1 => A > 1
+ Nếu 2006 x 2007 thì: A = x – 2006 + 2007 – x = 1
+ Nếu x > 2007 thì A = x - 2006 - 2007 + x = 2x – 4013
Do x > 2007 => 2x – 4013 > 4014 – 4013 = 1 => A > 1.
Vậy A đạt giá trị nhỏ nhất là 1 khi 2006 x 2007
Bài 4. Hiện nay hai kim đồng hồ chỉ 10 giờ. Sau ít nhất bao lâu thì 2 kim đồng hồ nằm đối diện nhau trên một đường thẳng. (4 điểm mỗi)
Gọi x, y là số vòng quay của kim phút và kim giờ khi 10giờ đến lúc 2 kim đối nhau trên một đường thẳng, ta có: x – y = (ứng với từ số 12 đến số 4 trên đông hồ)
và x : y = 12 (Do kim phút quay nhanh gấp 12 lần kim giờ)
Do đó:
x = giờ)
Vậy thời gian ít nhất để 2 kim đồng hồ từ khi 10 giờ đến lúc nằm đối diện nhau trên một đường thẳng là giờ
Bài 5. Cho tam giác vuông ABC ( A = 1v), đường cao AH, trung tuyến AM. Trên tia đối tia MA lấy điểm D sao cho DM = MA. Trên tia đối tia CD lấy điểm I sao cho CI = CA, qua I vẽ đường thẳng song song với AC cắt đường thẳng AH tại E. Chứng minh: AE = BC (4 điểm mỗi)
Đường thẳng AB cắt EI tại F
ABM = DCM vì:
AM = DM (gt), MB = MC (gt),
= DMC (đđ) => BAM = CDM
=>FB // ID => IDAC
Và FAI = CIA (so le trong) (1)
IE // AC (gt) => FIA = CAI (so le trong) (2)
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Nguyễn Thị Trung
Dung lượng: 2,45MB| Lượt tài: 2
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)