Đề & ĐA HSG Toán 7 năm 2003-2004
Chia sẻ bởi Nguyễn Thiên Hương |
Ngày 12/10/2018 |
57
Chia sẻ tài liệu: Đề & ĐA HSG Toán 7 năm 2003-2004 thuộc Đại số 7
Nội dung tài liệu:
Trường THCS Đông Minh
đề thi HS giỏi môn toán lớp 7
Năm học: 2009-2010
Thời gian: 120 phút (không kể giao đề)
Bài 1: (2đ) Thực hiện phép tính (bằng cách hợp lý nếu có thể)
- 15,5.20,8 + 3,5.9,2 – 15,5.9,2 + 3,5.20,8
25. 3 + - 22 -
5
Bài 2: (1,5đ) Tìm x biết:
a)
b)
Bài 3: (1,5đ) Cho các đa thức: g(x) = -3x + x2 – 2 + 5x5
a) Tính g(x) = f(x) - g(x)
b) Đa thức g(x) có nghiệm hay không? Vì sao?
Bài 4: (1đ) Cho hàm số xác định với mọi giá trị của x khác 0 thỏa mãn:
a)
b)
c) với mọi x10, x20 và x1+ x20
Chứng minh:
Bài 5: (1đ) Cho đa thức: a4x4 + a3x3 + a2x2 + a1x + a
Biết rằng:
Chứng tỏ rằng: với mọi x.
Bài 6: (3đ) Cho tam giác ABC vuông ở A có C = 300, kẻ AH vuông góc với BC (HBC). Trên đoạn HC lấy điểm D sao cho HD = HB, từ C kẻ CE vuông góc với AD. Chứng minh.
a) Tam giác ABD đều.
b) AH = CE.
c) EH // AC.
đáp án toán 7-Đông Minh
Bài 1: (2đ) Mỗi câu làm đúng 05đ
a) = -15,5(20,8 + 9,2) + 3,5.(9,2 + 20,8) 0.25đ
= - 15,5 . 30 + 3,5 . 30
= 30 . (-15,5 + 3,5)
= 30.(-12) = 360 0.25đ
b) = (-55,7 + 55,7) + (10,25 – 0,25) 0.25đ
= 10 0.25đ
c) 0.25đ
1 0.25đ
d) 0.25đ
= 5 + 1 + 0,5 = 6,5 0.25đ
Bài 2: (1.5đ)
a) (1đ)
+ Nếu x – 1 0 => x 1
Khi đó (1) có dạng x – 1 + 2x = 4
(thỏa mãn x 1) 0.5đ
+ Nếu x – 1 < 0 => x < 1
Khi đó (1) có dạng – (x – 1) + 2x = 4
=> x = 3 (không thỏa mãn x < 1) 0.5đ
Vậy
b) (0.5đ)
0.25đ
Bài 3: (1,5đ) Mỗi câu đúng 0.75đ
a) Tính được g(x) = x2 – 2x = 2 0.75đ
b) g(x) = x2 – x – x + 1 + 1 0.5đ
= (x – 1)2 + 1 > 0
=> đa thức g(x) không có nghiệm 0.25đ
Bài 4: (1đ)
Tương tự: 0,5đ
Do
nên 0.25đ
0,25đ
Vậy: (ĐPCM)
Bài 5: (1đ)
Do nên a4
đề thi HS giỏi môn toán lớp 7
Năm học: 2009-2010
Thời gian: 120 phút (không kể giao đề)
Bài 1: (2đ) Thực hiện phép tính (bằng cách hợp lý nếu có thể)
- 15,5.20,8 + 3,5.9,2 – 15,5.9,2 + 3,5.20,8
25. 3 + - 22 -
5
Bài 2: (1,5đ) Tìm x biết:
a)
b)
Bài 3: (1,5đ) Cho các đa thức: g(x) = -3x + x2 – 2 + 5x5
a) Tính g(x) = f(x) - g(x)
b) Đa thức g(x) có nghiệm hay không? Vì sao?
Bài 4: (1đ) Cho hàm số xác định với mọi giá trị của x khác 0 thỏa mãn:
a)
b)
c) với mọi x10, x20 và x1+ x20
Chứng minh:
Bài 5: (1đ) Cho đa thức: a4x4 + a3x3 + a2x2 + a1x + a
Biết rằng:
Chứng tỏ rằng: với mọi x.
Bài 6: (3đ) Cho tam giác ABC vuông ở A có C = 300, kẻ AH vuông góc với BC (HBC). Trên đoạn HC lấy điểm D sao cho HD = HB, từ C kẻ CE vuông góc với AD. Chứng minh.
a) Tam giác ABD đều.
b) AH = CE.
c) EH // AC.
đáp án toán 7-Đông Minh
Bài 1: (2đ) Mỗi câu làm đúng 05đ
a) = -15,5(20,8 + 9,2) + 3,5.(9,2 + 20,8) 0.25đ
= - 15,5 . 30 + 3,5 . 30
= 30 . (-15,5 + 3,5)
= 30.(-12) = 360 0.25đ
b) = (-55,7 + 55,7) + (10,25 – 0,25) 0.25đ
= 10 0.25đ
c) 0.25đ
1 0.25đ
d) 0.25đ
= 5 + 1 + 0,5 = 6,5 0.25đ
Bài 2: (1.5đ)
a) (1đ)
+ Nếu x – 1 0 => x 1
Khi đó (1) có dạng x – 1 + 2x = 4
(thỏa mãn x 1) 0.5đ
+ Nếu x – 1 < 0 => x < 1
Khi đó (1) có dạng – (x – 1) + 2x = 4
=> x = 3 (không thỏa mãn x < 1) 0.5đ
Vậy
b) (0.5đ)
0.25đ
Bài 3: (1,5đ) Mỗi câu đúng 0.75đ
a) Tính được g(x) = x2 – 2x = 2 0.75đ
b) g(x) = x2 – x – x + 1 + 1 0.5đ
= (x – 1)2 + 1 > 0
=> đa thức g(x) không có nghiệm 0.25đ
Bài 4: (1đ)
Tương tự: 0,5đ
Do
nên 0.25đ
0,25đ
Vậy: (ĐPCM)
Bài 5: (1đ)
Do nên a4
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Nguyễn Thiên Hương
Dung lượng: 34,60KB|
Lượt tài: 2
Loại file: rar
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)