Dấu hiệu chia het

Chia sẻ bởi Võ Khắc Hùng | Ngày 12/10/2018 | 47

Chia sẻ tài liệu: dấu hiệu chia het thuộc Đại số 7

Nội dung tài liệu:

Trong lý thuyết số, chia hết là một quan hệ hai ngôi trên tập các số nguyên. Quan hệ này cũng có thể mở rộng cho các phần tử trên một vành. Quan hệ chia hết gắn liền với nhiều khái niệm quan trọng trong lý thuyết số như số nguyên tố, hợp số, định lý cơ bản của số học...
Quan hệ chia hết trên tập số nguyên
Cho hai số nguyên a, b. Nếu tồn tại số nguyên q sao cho a=b.q thì ta nói rằng a chia hết cho b , hay b chia hết a (kí hiệu b|a). Khi đó người ta cũng gọi a là bội số (hay đơn giản là bội) của b, còn b là ước số (hay đơn giản là ước) của b.
Ví dụ: 15 = 5.3, nên 15 chia hết cho 3, 3 chia hết 15, 15 là bội của 3, 3 là ước của 15
Đặc biệt, số 0 chia hết cho mọi số khác không, số 1 chia hết mọi số nguyên, mỗi số nguyên khác 0 chia hết cho chính nó. Chính từ đó, mọi số nguyên khác 1 có ít nhất hai ước là 1 và chính nó. Nếu số nguyên b|a thì số đối của nó -b cũng là ước của a. Do đó trong nhiều trường hợp, nếu n à số tự nhiên, người ta chỉ quan tâm tới các ước tự nhiên của n. Một số tự nhiên khác 1, có đúng hai ước tự nhiên là 1 và chính nó được gọi là số nguyên tố.
Các số tự nhiên lớn hơn 1, không là số nguyên tố đựoc gọi là hợp số.
Định lí về phép chia có dư
Cho a, b là hai số nguyên (b khác 0), khi đó tồn tại duy nhất hai số nguyên q, r sao cho a= bq+r với 0 ≤ r <|b|. Ta có a là số bị chia, b là số chia, q là thương số và r là số dư. Khi chia a cho b có thể có số dư là 0; 1; 2;...; |b|-1. (Kí hiệu |b| là giá trị tuyệt đối của b.)
Đặc biệt nếu r = 0 thì a = bq, khi đó a chia hết cho b.
Tính chất
a) Nếu b|a và c|b thì c|a.
b) Nếu c|a, b|a và (b,c)=1 thì bc|a.
c) Nếu c|ab và (b,c)=1 thì c|a.
d) Trong n số nguyên liên tiếp có một và chỉ một số chia hết cho n (n≥1).
Chứng minh: Lấy n số nguyên liên tiếp chia cho n thì được n số dư khác nhau từng đôi một. Trong đó có duy nhất một số dư bằng 0, tức là có duy nhất một số chia hết cho n.
e) Nếu m|a và m|b thì m|(a+b) và m|(a-b).
Chứng minh: Vì m|a nên a=m×n1, vì m|b nên b=m×n2 (n1, n2 là các số nguyên). Vậy a+b=m×(n1+n2) mà (n1+n2) là số nguyên nên m|(a+b).
Định lý cơ bản của số học
Định lý cơ bản của số học (hay định lý về sự phân tích duy nhất ra các thừa số nguyên tố) phát biểu như sau: Mọi số tự nhiên lớn hơn 1 có thể viết một cách duy nhất (không kể sự sai khác về thứ tự các thừa số) thành tích các thừa số nguyên tố,chẳng hạn


Một cách tổng quát: Mọi số tự nhiên n lớn hơn 1, có thể viết duy nhất dưới dạng:

trong đó là các số nguyên tố. Vế phải của đẳng thức này được gọi là dạng phân tích tiêu chuẩn của n`.
Tập hợp các ước tự nhiên của số n
Số các ước tự nhiên của số tự nhiên n
Số các ước tự nhiên của số tự nhiên n ký hiệu là τ(n)
Cho số tự nhiên n> 1 với dạng phân tích tiêu chuẩn như trên. Khi đó mỗi ước b của n có dạng:

trong đó với mỗi .
Do đó số tất cả các ước tự nhiên của n là

ví dụ: , nên số 6936 có số các ước tự nhiên là (3+1).(1+1).(2+1)=24.
[sửa] Tổng các ước tự nhiên của số tự nhiên n
Tổng các ước tự nhiên của số tự nhiên n được ký hiệu là σ(n).
Công thức tính σ(n) như sau

Xem thêm :Hàm tống các ước
Các ước tự nhiên khác chính nó của n được gọi là ước chân chính của n.
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Võ Khắc Hùng
Dung lượng: 92,50KB| Lượt tài: 2
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)