Chương IV. §8. Cộng, trừ đa thức một biến

Chia sẻ bởi Nguyễn Văn Hải | Ngày 01/05/2019 | 50

Chia sẻ tài liệu: Chương IV. §8. Cộng, trừ đa thức một biến thuộc Đại số 7

Nội dung tài liệu:

Trường THCS Đồng - Tường
Chào mừng Các Thầy, Cô giáo
về dự giờ thao giảng lớp 7A
gv. Đậu Đức Trung
Kiểm tra bài cũ
Bài tập 2 : Cho hai đa thức
P(x) = 2x5+ 5x4 - x3 + x2 - x -1
Q(x) = -x4 + x3 +5x + 2
Hãy P(x) + Q(x) ; P(x) - Q(x)
Bài tập 1:
Cho đa thức A(x) = x2 + 2x4 + 4x3 - 5x6 + 3x2 - 4x3 - 1
Sắp xếp đa thức trên theo số mũ giảm dần của biến
Chỉ ra các hệ số khác 0 của A(x)
đáp án
Bài tập 1:
Cho đa thức A(x) = x2 + 2x4 + 4x3 - 5x6 + 3x2 - 4x3 - 1
Sắp xếp đa thức trên theo số mũ giảm dần của biến
Chỉ ra các hệ số khác 0 của A(x)
Giải: - Thu gọn
A(x) = (x2 + 3x2 )+ 2x4 + (4x3 - 4x3) - 5x6 - 1
= 4x2 + 2x4 + 0 - 5x6 - 1 = 4x2 + 2x4 - 5x6 - 1
Sắp xếp : A(x) = -5x6 + 2x4 + 4x2 - 1
b) Các hệ số khác 0 của A(x) là: -5; 2; 4; -1
Bài tập 2 P(x) = 2x5+ 5x4 - x3 + x2 - x -1
Q(x) = -x4 + x3 +5x + 2

Giải :
+ 5x4
- x4
= 2x5
- x3
+x3
+ x2
- x
+5x
-1
+ 2
= 2x5 + 4x4 + x2 + 4x + 1
= 2x5+(5x4-x4)+(- x3+x3)+ x2 +(- x +5x)+( -1+2)
P(x) + Q(x) = (2x5+ 5x4 - x3 + x2 - x -1)+( -x4 +x3 +5x + 2 )
= 2x5+ 5x4 - x3 + x2 - x -1 + x4- x3 -5x - 2
= 2x5+(5x4+x4)+( -x3-x3) +x2+(-x -5x)+(-1-2)
= 2x5 + 6x4 - 2x3 +x2 - 6x -3
------------------------------------------------------------------------------------------------------------------------
P(x)-Q(x)=(2x5+ 5x4 - x3+ x2-x - 1)-(-x4 + x3 +5x +2 )
Toán 7
Cộng, trừ đa thức một biến
Thứ năm ngày 25/03/2010
1. Cộng hai đa thức một biến
P(x) = 2x5+ 5x4 - x3 + x2 - x -1
Q(x) = -x4 + x3 +5x + 2
Hãy tính tổng P(x) + Q(x)
Ví dụ 1 : Cho hai thức
Cách 1.Thực hiện theo cách cộng đa thức đã học ở (Bài 6)
Cách 2.Cộng hai đa thức theo cột dọc.
Cách 2:
P(x) = 2x5+ 5x4 - x3 + x2 - 1x - 1
Q(x) = - x4 + x3 + 5x+ 2
+
P(x)+Q(x) = 2x5+ 4x4 + x2+ 4x +1
Bài tập 44(sgk): Cho hai đa thức
P(x)= -5x3- + 8x4 + x2
và Q(x)= x2 -5x- 2x3 + x4 -
Hãy tính P(x) + Q(x) bằng 2 cách
Cách 2:
Q(x) =
P(x) = 2x5+ 5x4 - x3 + x2 - x - 1
-x4
+ x3
+5x + 2
+
P(x)+Q(x) =
x3
- x3
2x5
x4
x4
+ x2
x
x
+ 4
+ 1
+4
+5
-1
Cách 1
P(x)+Q(x)=( -5x3- +8x4 + x2) +( x2 -5x- 2x3 +x4 - )
= -5x3- +8x4+ x2+ x2- 5x- 2x3+ x4-
= (8x4+x4)+(-5x3-2x3)+(x2+x2) -5x +(- - )
= 9x4 - 7x3 + 2x2 - 5x -1

Cách 2 : P(x) = 8x4 - 5x3 + x2 -
Q(x) = x4 - 2x3 + x2 - 5x -
P(x)+P(x)= 9x4 - 7x3 + 2x2 - 5x - 1
+
Toán 7
Cộng, trừ đa thức một biến
Thứ năm ngày 25/03/2010
1. Cộng hai đa thức một biến
P(x) = 2x5+ 5x4 - x3 + x2 - x -1
Q(x) = -x4 + x3 +5x + 2
Hãy tính tổng P(x) + Q(x)
Ví dụ 1 : Cho hai thức
Cách 1.Thực hiện theo cách cộng đa thức đã học ở (Bài 6)
Cách 2.Cộng hai đa thức theo cột dọc.
Cách 2:
P(x) = 2x5+ 5x4 - x3 + x2 - 1x - 1
Q(x) = - x4 + x3 + 5x+ 2
+
P(x)+Q(x) = 2x5+ 4x4 + x2+ 4x +1
2. Trừ hai đa thức một biến
Ví dụ : Tính P(x)-Q(x)
với P(x) và Q(x) đã cho ở phần 1 .
Cách 1.Thực hiện theo cách trừ đa thức đã học ở (Bài 6)
Chú ý bỏ ngoặc
Có dấu trừ đằng trước
Toán 7
Cộng, trừ đa thức một biến
Thứ năm ngày 25/03/2010
1. Cộng hai đa thức một biến
P(x) = 2x5+ 5x4 - x3 + x2 - x -1
Q(x) = -x4 + x3 +5x + 2
Hãy tính tổng P(x) + Q(x)
Ví dụ 1 : Cho hai thức
Cách 1.Thực hiện theo cách cộng đa thức đã học ở (Bài 6)
Cách 2.Cộng hai đa thức theo cột dọc.
Cách 2:
P(x) = 2x5+ 5x4 - x3 + x2 - 1x - 1
Q(x) = - x4 + x3 + 5x+ 2
+
P(x)+Q(x) = 2x5+ 4x4 + x2+ 4x +1
2. Trừ hai đa thức một biến
Ví dụ : Tính P(x)-Q(x)
với P(x) và Q(x) đã cho ở phần 1 .
Cách 2. Trừ hai đa thức theo cột dọc.
Cách 1.Thực hiện theo cách trừ đa thức đã học ở (Bài 6)
Cách 2:
P(x) = 2x5+ 5x4 - x3 + x2 - 1x - 1
Q(x) = - x4 + x3 + 5x+ 2
-
P(x)+Q(x) = 2x5+6x4-2x3 + x2- 6x - 3
Q(x) =
P(x) = 2x5+ 5x4 - x3 + x2 - x - 1
-x4
+ x3
+5x + 2
-
P(x)-Q(x) =
-2x3
-x3-x3=
2x5-0=
+6x4
5x4-(-x4)=
+x2
-6x
-x - 5x =
-1 - 2 =
-3
Nháp
2x5
x2- 0 =
?
?
?
?
?
?
Toán 7
Cộng, trừ đa thức một biến
Thứ năm ngày 25/03/2010
1. Cộng hai đa thức một biến
P(x) = 2x5+ 5x4 - x3 + x2 - x -1
Q(x) = -x4 + x3 +5x + 2
Hãy tính tổng P(x) + Q(x)
Ví dụ 1 : Cho hai thức
Cách 1.Thực hiện theo cách cộng đa thức đã học ở (Bài 6)
Cách 2.Cộng hai đa thức theo cột dọc.
Cách 2:
P(x) = 2x5+ 5x4 - x3 + x2 - 1x - 1
Q(x) = - x4 + x3 + 5x+ 2
+
P(x)+Q(x) = 2x5+ 4x4 + x2+ 4x +1
2. Trừ hai đa thức một biến
Ví dụ : Tính P(x)-Q(x)
với P(x) và Q(x) đã cho ở phần 1 .
Cách 2. Trừ hai đa thức theo cột dọc.
Cách 1.Thực hiện theo cách trừ đa thức đã học ở (Bài 6)
Cách 2:
P(x) = 2x5+ 5x4 - x3 + x2 - 1x - 1
Q(x) = - x4 + x3 + 5x+ 2
-
P(x)+Q(x) = 2x5+6x4-2x3 + x2- 6x - 3
Toán 7
Cộng, trừ đa thức một biến
Thứ năm ngày 25/03/2010
1. Cộng hai đa thức một biến
P(x) = 2x5+ 5x4 - x3 + x2 - x -1
Q(x) = -x4 + x3 +5x + 2
Hãy tính tổng P(x) + Q(x)
Ví dụ 1 : Cho hai thức
Cách 1.Thực hiện theo cách cộng đa thức đã học ở (Bài 6)
Cách 2.Cộng hai đa thức theo cột dọc.
2. Trừ hai đa thức một biến
Ví dụ : Tính P(x)-Q(x)
với P(x) và Q(x) đã cho ở phần 1 .
Cách 2. Trừ hai đa thức theo cột dọc.
Cách 1.Thực hiện theo cách trừ đa thức đã học ở (Bài 6)
Để cộng hoặc trừ hai đa thức một biến ,
ta có thể thực hiện theo một trong hai cách sau :
Cách 1 :
Thực hiện theo cách cộng trừ đa thức đã học ở Bài 6 .
Cách 2 :
Sắp xếp các hạng tử của hai đa thức cùng theo luỹ thừa giảm ( hoặc tăng) của biến , rồi đặt phép tính theo cột dọc tương tự như cộng , trừ các số .
*)Chú ý :
(chú ý đặt các đơn thức đồng dạng ở cùng một cột )
Toán 7
Cộng, trừ đa thức một biến
Thứ năm ngày 25/03/2010
1. Cộng hai đa thức một biến
P(x) = 2x5+ 5x4 - x3 + x2 - x -1
Q(x) = -x4 + x3 +5x + 2
Hãy tính tổng P(x) + Q(x)
Ví dụ 1 : Cho hai thức
Cách 1.Thực hiện theo cách cộng đa thức đã học ở (Bài 6)
Cách 2.Cộng hai đa thức theo cột dọc.
2. Trừ hai đa thức một biến
Ví dụ : Tính P(x)-Q(x)
với P(x) và Q(x) đã cho ở phần 1 .
Cách 2. Trừ hai đa thức theo cột dọc.
Cách 1.Thực hiện theo cách trừ đa thức đã học ở (Bài 6)
*)Chú ý : SGK
Cho hai đa thức :
M(x) = x4 + 5x3 - x2 + x - 0,5
N(x) = 3x4 - 5x2 - x - 2,5
Hãy tính: a) M(x) + N(x) và
b) M(x) - N(x)
?1
Toán 7
Cộng, trừ đa thức một biến
Thứ năm ngày 25/03/2010
1. Cộng hai đa thức một biến
P(x) = 2x5+ 5x4 - x3 + x2 - x -1
Q(x) = -x4 + x3 +5x + 2
Hãy tính tổng P(x) + Q(x)
Ví dụ 1 : Cho hai thức
Cách 1.Thực hiện theo cách cộng đa thức đã học ở (Bài 6)
Cách 2.Cộng hai đa thức theo cột dọc.
2. Trừ hai đa thức một biến
Ví dụ : Tính P(x)-Q(x)
với P(x) và Q(x) đã cho ở phần 1 .
Cách 2. Trừ hai đa thức theo cột dọc.
Cách 1.Thực hiện theo cách trừ đa thức đã học ở (Bài 6)
?
Dựa vào phép trừ số nguyên,
Em hãy cho biết:
5- 7 = 5 + (-7)
P(x) - Q(x) = ?
P(x)-Q(x)=
P(x) + [- Q(x)]
Cho đa thức:
Q(x) = -x4 + x3 + 5x +2
?
Hãy xác định đa thức: - Q(x) ?
Q(x) = -(-x4 + x3 + 5x +2)
Q(x) = (-x4 + x3 + 5x +2)
= x4 - x3 -5x - 2
Giải
Đa thức: - Q(x) được gọi là đa thức đối của Q(x)
Toán 7
Cộng, trừ đa thức một biến
Thứ năm ngày 25/03/2010
1. Cộng hai đa thức một biến
P(x) = 2x5+ 5x4 - x3 + x2 - x -1
Q(x) = -x4 + x3 +5x + 2
Hãy tính tổng P(x) + Q(x)
Ví dụ 1 : Cho hai thức
Cách 1.Thực hiện theo cách cộng đa thức đã học ở (Bài 6)
Cách 2.Cộng hai đa thức theo cột dọc.
2. Trừ hai đa thức một biến
Ví dụ : Tính P(x)-Q(x)
với P(x) và Q(x) đã cho ở phần 1 .
Cách 2. Trừ hai đa thức theo cột dọc.
Cách 1.Thực hiện theo cách trừ đa thức đã học ở (Bài 6)
P(x) = 2x5+ 5x4 - x3 + x2 - x - 1
+
- Q(x) = + x4 - x3 - 5x - 2
= 2x5+6x4 -2x3+ x2 - 6x - 3
P(x) + [- Q(x)]
Toán 7
Cộng, trừ đa thức một biến
Thứ năm ngày 25/03/2010
1. Cộng hai đa thức một biến
P(x) = 2x5+ 5x4 - x3 + x2 - x -1
Q(x) = -x4 + x3 +5x + 2
Hãy tính tổng P(x) + Q(x)
Ví dụ 1 : Cho hai thức
Cách 1.Thực hiện theo cách cộng đa thức đã học ở (Bài 6)
Cách 2.Cộng hai đa thức theo cột dọc.
2. Trừ hai đa thức một biến
Ví dụ : Tính P(x)-Q(x)
với P(x) và Q(x) đã cho ở phần 1 .
Cách 2. Trừ hai đa thức theo cột dọc.
Cách 1.Thực hiện theo cách trừ đa thức đã học ở (Bài 6)
Bài tập Cho các đa thức :
P(x) = 2x4 - x - 2x3 +1
Q(x) = 5x2 - x3 + 4x
H(x) = -2x4 + x2 + 5
Hãy tính: a) P(x)+Q(x)+H(x)
b) P(x)-Q(x)-H(x)
Cho các đa thức :
P(x) = 2x4 - x - 2x3 +1
Q(x) = 5x2 - x3 + 4x
H(x) = -2x4 + x2 + 5
Hãy tính: a) P(x)+Q(x)+H(x)
b) P(x)-Q(x)-H(x)
Bạn Bình đã giải câu b bài toán bên như sau
P(x) = 2x4 - 2x3 - x +1
-Q(x) = + x3 + 5x2 - 4x
-H(x) = +2x4 - x2 - 5
P(x)-Q(x)-H(x)
= P(x)+[-Q(x)]+[-H(x)]
= 4x4 -x3 + 4x2 -5x - 4
-
- 6
+
Toán 7
Cộng, trừ đa thức một biến
Thứ năm ngày 25/03/2010
1. Cộng hai đa thức một biến
P(x) = 2x5+ 5x4 - x3 + x2 - x -1
Q(x) = -x4 + x3 +5x + 2
Hãy tính tổng P(x) + Q(x)
Ví dụ 1 : Cho hai thức
Cách 1.Thực hiện theo cách cộng đa thức đã học ở (Bài 6)
Cách 2.Cộng hai đa thức theo cột dọc.
2. Trừ hai đa thức một biến
Ví dụ : Tính P(x)-Q(x)
với P(x) và Q(x) đã cho ở phần 1 .
Cách 2. Trừ hai đa thức theo cột dọc.
Cách 1.Thực hiện theo cách trừ đa thức đã học ở (Bài 6)
Viết đa thức: 5x2 - 3x + 2 thành
- Tổng của hai đa thức cùng biến x
- Hiệu của hai đa thức cùng biến x
Bài tập
Tách mỗi hệ số của đa thức trên thành Tổng hoặc hiệu của hai số
Viết đa thức: 5x2 - 3x + 2 thành
Tổng của hai đa thức cùng biến x
Hiệu của hai đa thức cùng biến x
Tách mỗi hệ số của đa thức trên thành Tổng hoặc hiệu của hai số
Chẳng hạn có thể tách như sau:
5 = 2 + 3; -3 = (-1) + (-2); 2 = 1 + 1 Từ đó ta có
5x2 - 3x + 2 = (2x2 - x + 1) + (3x2 - 2x +1)
5 = 6 - 1; -3 = 1 - 4; 2 = 5 - 3 Từ đó ta có
5x2 - 3x + 2 = (6x2 + x + 5) - (x2 + 4x + 3)
Hướng dẫn
về nhà
Nắm vững cách cộng , trừ các đa thức một biến và chọn cách làm phù hợp cho từng bài
Làm các bài tập : 44 ; 46 ;48 ; 50 ;52
(SGK 45+46 )
Khi cộng hoặc trừ các đa thức một biến thông thường nếu hai đa thức có từ bốn , năm hạng tử trở lên thì ta nên cộng theo cột dọc.
KÍNH CHÚC QUÝ THẦY CÔ SỨC KHOẺ
CHÚC CÁC EM HỌC GIỎI
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Nguyễn Văn Hải
Dung lượng: | Lượt tài: 3
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)