Chương IV. §8. Cộng, trừ đa thức một biến
Chia sẻ bởi Hoàng Mai |
Ngày 01/05/2019 |
46
Chia sẻ tài liệu: Chương IV. §8. Cộng, trừ đa thức một biến thuộc Đại số 7
Nội dung tài liệu:
CHÀO MỪNG QUÝ THẦY CÔ VỀ DỰ GIỜ THAO GIẢNG HÔM NAY
GIÁO VIÊN THỰC HIỆN: HOANG MAI
MÔN SỐ HỌC
LỚP 7
CHĂM
NGOAN
HỌC
GIỎI
KÍNH
THẦY
MẾN
BẠN
HỘI THI GIÁO VIÊN GIỎI CẤP CƠ SỞ
KIỂM TRA BÀI CŨ
Bài tập : Cho hai đa thức
P(x) = 2x5+ 5x4 - x3 + x2 - x -1
Q(x) = -x4 + x3 +5x + 2
Hãy P(x) + Q(x) ; P(x) - Q(x)
P(x) = 2x5+ 5x4 - x3 + x2 - x -1
Q(x) = -x4 + x3 +5x + 2
Giải :
+ 5x4
- x4
= 2x5
- x3
+x3
+ x2
- x
+5x
-1
+ 2
= 2x5 + 4x4 + x2 +4x + 1
= 2x5+(5x4-x4)+(- x3+x3)+ x2 +(- x +5x)+( -1+2)
P(x) + Q(x) = (2x5+ 5x4 - x3 + x2 - x -1)+( -x4 +x3 +5x + 2 )
= 2x5+ 5x4 - x3 + x2 - x -1 + x4 - x3 - 5x - 2
= 2x5+(5x4+x4)+( -x3- x3) +x2+(- x - 5x) + (- 1 - 2)
=2x5 + 6x4 - 2x3 +x2 -6x -3
------------------------------------------------------------------------------------------------------------------------
P(x)-Q(x)=(2x5+ 5x4 - x3+ x2-x - 1)-(-x4 + x3 +5x +2 )
TIẾT 61: CỘNG, TRỪ ĐA THỨC MỘT BIẾN
TIẾT 61: CỘNG, TRỪ ĐA THỨC MỘT BIẾN
1. Cộng hai đa thức một biến :
Ví dụ : Cho hai đa thức
P(x) = 2x5+ 5x4 - x3 + x2 - x -1
Q(x) = -x4 + x3 +5x + 2
Hãy tính tổng: P(x) + Q(x)=?
TIẾT 61: CỘNG, TRỪ
ĐA THỨC MỘT BIẾN
1.Cộng hai đa thức một biến :
Ví dụ 1 : Cho hai thức
P(x) = 2x5+ 5x4 – x3 + x2 – x -1 Q(x) = -x4 + x3 +5x + 2
Hãy tính tổng P(x) + Q(x)
Giải :
Cách 1: ( Thực hiện theo cách
cộng đa thức ở bài 6)
Ta sẽ cộng 2 đa thức trên tương
tự như cộng 2 số theo cột dọc
Tiết 61 - §8. CỘNG, TRỪ ĐA THỨC MỘT BIẾN
Ví dụ 1. Tính tổng của hai đa thức sau :
1. Cộng hai đa thức một biến
P(x) = 2x5 5x4 x3 + x2 – x - 1
và Q(x) = -x4 + x3 + 5x + 2
Lời giải
Cách 2 : (cộng theo cột dọc)
P(x) = 2x5 5x4 x3 + x2 – x - 1
Q(x) = - x4 + x3 + 5x + 2
+
P(x) + Q(x) =
2x5
5x4 + (-x4) =
-x3 + x3 =
[(5 + (-1)]x4 = 4x4
0
+ 4x4
+ x2
-x + 5x =
(-1 + 5)x = 4x
-1 + 2 = 1
+ 4x
+ 1
TIẾT 61: CỘNG, TRỪ
ĐA THỨC MỘT BIẾN
1.Cộng hai đa thức một biến :
Ví dụ : Cho hai thức
P(x) = 2x5+ 5x4 – x3 + x2 – x -1 Q(x) = -x4 + x3 +5x + 2
2. Trừ hai đa thức một biến :
Cách 1:
P(x)-Q(x)
= (2x5+ 5x4 - x3 + x2 - x - 1)
-(-x4 + x3 +5x +2 )
Giải :
Cách 1: ( Thực hiện theo cách
cộng đa thức bất kì )
Cách 2: (Thực hiện theo cột dọc)
Ví dụ : Tính P(x) - Q(x)
với P(x) và Q(x) đã cho ở phần 1 .
= 2x5+ 5x4 - x3 + x2 - x -1
+ x4- x3 -5x - 2
=2x5+(5x4+x4)+( -x3-x3) +x2
+(-x -5x)+(-1-2)
=2x5 + 6x4 - 2x3 +x2 -6x -3
Chú ý bỏ ngoặc
Có dấu trừ đằng trước
Tính P(x)-Q(x)
tương tự như trừ 2 đa thức bất kì
Giải :
Cách 1: ( Thực hiện theo cách
trừ đa thức bất kì )
TIẾT 61: CỘNG, TRỪ
ĐA THỨC MỘT BIẾN
1.Cộng hai đa thức một biến :
Cách 1: ( Thực hiện theo cách
cộng đa thức ở bài 6 )
Cách 2:(Thực hiện theo cột dọc)
Cách 2:
Q(x) =
P(x) = 2x5+ 5x4 - x3 + x2 - x - 1
-x4
+ x3
+5x + 2
-
P(x)-Q(x) =
-2x3
-x3-x3=
2x5-0=
+6x4
5x4-(-x4)=
+x2
-6x
-x - 5x =
-1 - 2 =
-3
NHÁP
2. Trừ hai đa thức một biến :
Ví dụ : Tính P(x)-Q(x)
với P(x) và Q(x) đã cho ở phần 1 .
Giải :
Cách 1: ( Thực hiện theo cách
trừ đa thức bất kì )
2x5
x2- 0 =
?
?
?
?
?
?
Cách 2:
TIẾT 61: CỘNG, TRỪ
ĐA THỨC MỘT BIẾN
1.Cộng hai đa thức một biến :
Cách 1: ( Thực hiện theo cách
cộng đa thức ở bài 6 )
Cách 2:(Thực hiện theo cột dọc)
P(x) = 2x5+ 5x4 - x3 + x2 - x - 1
_
Q(x) = - x4 + x3 +5x + 2
P(x)-Q(x)= 2x5+6x4 -2x3+ x2 -6x -3
2. Trừ hai đa thức một biến :
Ví dụ : Tính P(x)-Q(x)
với P(x) và Q(x) đã cho ở phần 1 .
Cách 2:
Giải :
Cách 1: ( Thực hiện theo cách
trừ đa thức ổ bài 6 )
Cách 2:(Thực hiện theo cột dọc)
TIẾT 61: CỘNG, TRỪ
ĐA THỨC MỘT BIẾN
1.Cộng hai đa thức một biến :
Cách 1: ( Thực hiện theo cách
cộng đa thức bất kì )
Cách 2:(Thực hiện theo cột dọc)
P(x) = 2x5+ 5x4 - x3 + x2 - x- 1
+
-Q(x) = x4 - x3 -5x - 2
P(x)-Q(x)= 2x5+ 6x4 -2x3+ x2 -6x -3
2. Trừ hai đa thức một biến :
Ví dụ : Tính P(x)-Q(x)
với P(x) và Q(x) đã cho ở phần 1 .
Cách trình bày khác của cách 2
Giải :
Cách 1: ( Thực hiện theo cách
trừ đa thức bất kì )
Cách 2:(Thực hiện theo cột dọc)
P(x)= 2x5+ 5x4 - x3 + x2 - x -1
_
Q(x)= - x4 + x3 +5x +2
P(x)-Q(x)= 2x5+6x4 -2x3+x2 -6x-3
P(x)-Q(x)=
P(x) + [-Q(x)]
Hãy xác định đa thức - Q(x) ?
Dựa vào phép trừ số nguyên,
Em hãy cho biết: 5- 7 = 5 + (-7)
P(x) – Q(x) = ?
Q(x) = -(-x4 + x3 + 5x +2)
Q(x) = (-x4 + x3 + 5x +2)
= x4 - x3 -5x - 2
TIẾT 61: CỘNG, TRỪ
ĐA THỨC MỘT BIẾN
1.Cộng hai đa thức một biến :
Cách 1: ( Thực hiện theo cách
cộng đa thức bất kì )
Cách 2:(Thực hiện theo cột dọc)
P(x) = 2x5+ 5x4 - x3 + x2 - x- 1
+
-Q(x) = x4 - x3 -5x - 2
P(x)-Q(x)= 2x5+ 6x4 -2x3+ x2 -6x -3
2. Trừ hai đa thức một biến :
Ví dụ : Tính P(x)-Q(x)
với P(x) và Q(x) đã cho ở phần 1 .
Cách trình bày khác của cách 2
Giải :
Cách 1: ( Thực hiện theo cách
trừ đa thức bất kì )
Cách 2:(Thực hiện theo cột dọc)
P(x)= 2x5+ 5x4 - x3 + x2 - x -1
_
Q(x)= - x4 + x3 +5x +2
P(x)-Q(x)= 2x5+6x4 -2x3+x2 -6x-3
P(x) + [- Q(x)]
P(x) = 2x5+ 5x4 - x3 + x2 - x -1
+
-Q(x) = + x4 - x3 -5x -2
= 2x5+6x4 -2x3+x2 -6x-3
TIẾT 61: CỘNG, TRỪ
ĐA THỨC MỘT BIẾN
1.Cộng hai đa thức một biến :
2. Trừ hai đa thức một biến :
*)Chú ý :
Để cộng hoặc trừ hai đa thức một biến ,
ta có thể thực hiện theo một trong hai cách sau :
Cách 1 : Thực hiện theo cách cộng trừ đa
thức đã học ở Bài 6 .
Cách 2 : Sắp xếp các hạng tử của hai đa
thức cùng theo luỹ thừa giảm
( hoặc tăng) của biến , rồi đặt
phép tính theo cột dọc tương tự
như cộng , trừ các số .
(chú ý đặt các đơn thức đồng dạng ở cùng một cột )
Thảo luận nhóm 2 phút
?1
Hết giờ !
Cho hai đa thức :
M(x) = x4 + 5x3 - x2 + x - 0,5
N(x) = 3x4 - 5x2 - x - 2,5
Hãy tính: a) M(x) + N(x) và
b) M(x) - N(x)
a) M(x)= x4+5x3 -x2 + x - 0,5
+
N(x)=3x4 -5x2 -x -2,5
M(x)+N(x) =4x4+5x3 -6x2 - 3
Bài giải :
b) M(x)= x4+5x3 -x2 + x - 0,5
-
N(x)=3x4 -5x2 -x -2,5
M(x)-N(x) =-2x4+5x3+4x2 +2x +2
Trong các cách đặt phép tính sau, cách nào đặt đúng, cách nào đặt sai ? Hãy thực hiện phép tính ở cách đặt đúng
P(x) = 2x3 – x - 1
Q(x) = x2 - 5x + 2
+
P(x) + Q(x) =
P(x) = 2x3 – x - 1
Q(x) = 2 - 5x + x2
-
P(x) - Q(x) =
Cách 1
Cách 2
Cách 3
P(x) = 2x3 – x - 1
Q(x) = x2 - 5x + 2
+
P(x) + Q(x) =
Cách 4
P(x) = - 1 – x + 2x3
Q(x) = 2 - 5x + x2
-
P(x) - Q(x) =
2x3 + x2 - 6x + 1
- 3 + 4x – x2 + 2x3
Bài tập:
Luật chơi: Có 3 hộp quà khác nhau, trong mỗi hộp quà chứa một câu hỏi và một phần quà hấp dẫn. Nếu trả lời đúng câu hỏi thì món quà sẽ hiện ra. Nếu trả lời sai thì món quà không hiện ra. Thời gian suy nghĩ cho mỗi câu là 15 giây.
hộp quà may mắn
HỘP QUÀ MÀU VÀNG
Cho G(x)= - 4x5 + 3 – 2x2 – x + 2x3
thì -G(x) = 4x5 - 3 + 2x2 + x - 2x3
Đúng
SAI
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
HỘP QUÀ MÀU XANH
Bạn Nga tính A(x) – B(x) như sau, theo em bạn giải đúng hay sai? Giải thích?
Sai
Đúng
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
A(x) = 2x5 - 2x3 - x - 5/3
- B(x) = x5 - x3 - x2 + 5x - 1/3
A(x) - B(x) =
x5 - 3x3 -x2 + 4x - 2
+
Cho hai đa thức:
A(x) = 2x5 - 2x3 - x -
B(x) = - x5 + x3 + x2 - 5x +
HỘP QUÀ MÀU TÍM
Đúng
Sai
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Bạn An tính P(x) + Q(x) + H(x) như sau, theo em bạn giải đúng hay sai? Giải thích?
+5
P(x)+Q(x)+H(x)=
P(x)= x3 -2x2 + x +1
+ Q(x)= -x3 +x2 +1
H(x)= x2 +2x +3
3x
PHẦN THUỞNG LÀ ĐIỂM 10
Bạn đã trả lời sai rồi và một số hình ảnh “Đặc biệt” để giải trí.
PHẦN THƯỞNG LÀ:
ĐIỂM 10
Bài 48 (trang 45 SGK). Chọn đa thức mà em cho là kết quả đúng :
(2x3 – 2x + 1) - (3x2 + 4x – 1) = ?
Bài tập
Tiết 61: CỘNG TRỪ ĐA THỨC MỘT BIẾN
1.Cộng hai đa thức một biến :
Cách 1: ( Thực hiện theo cách cộng đa thức bất kì )
Cách 2:
(Thực hiện theo cột dọc)
P(x)= 2x5+5x4 -x3+ x2 - x -1
Q(x)= -x4+x3 +5x+2
P(x)+Q(x)=2x5 +4x4 + x2 +4x+1
+
2. Trừ hai đa thức một biến :
Cách 1: ( Thực hiện theo cách trừ đa thức bất kì )
Cách 2:(Thực hiện theo cột dọc)
P(x)= 2x5 + 5x4 - x3 + x2 - x -1
_
Q(x)= - x4 + x3 +5x +2
P(x)-Q(x)= 2x5+6x4 -2x3 +x2 -6x -3
HƯỚNG DẪN VỀ NHÀ
Nắm vững cách cộng , trừ các đa thức một biến và chọn cách làm phù hợp cho từng bài
-Làm các bài tập : 44 ; 45; 46 ;48 ; 50 ;52 (SGK/ 45+46 )
- Chú ý : Khi lấy đa thức đối của một đa thức phải lấy đối tất cả các hạng tử của đa thức đó .
Hướng dẫn bài 45
a) Vì P(x) + Q(x) = x5 – 2x2 + 1 => Q(x) = (x5 – 2x2 + 1) – P(x)
b) Vì P(x) – R(x) = x3 => R(x) = P(x) – x3
Thay đa thức P(x) vào rồi thực hiện phép tính
CẢM ƠN QUÝ THẦY CÔ
CHÚC CÁC EM HỌC TỐT
GIÁO VIÊN THỰC HIỆN: HOANG MAI
MÔN SỐ HỌC
LỚP 7
CHĂM
NGOAN
HỌC
GIỎI
KÍNH
THẦY
MẾN
BẠN
HỘI THI GIÁO VIÊN GIỎI CẤP CƠ SỞ
KIỂM TRA BÀI CŨ
Bài tập : Cho hai đa thức
P(x) = 2x5+ 5x4 - x3 + x2 - x -1
Q(x) = -x4 + x3 +5x + 2
Hãy P(x) + Q(x) ; P(x) - Q(x)
P(x) = 2x5+ 5x4 - x3 + x2 - x -1
Q(x) = -x4 + x3 +5x + 2
Giải :
+ 5x4
- x4
= 2x5
- x3
+x3
+ x2
- x
+5x
-1
+ 2
= 2x5 + 4x4 + x2 +4x + 1
= 2x5+(5x4-x4)+(- x3+x3)+ x2 +(- x +5x)+( -1+2)
P(x) + Q(x) = (2x5+ 5x4 - x3 + x2 - x -1)+( -x4 +x3 +5x + 2 )
= 2x5+ 5x4 - x3 + x2 - x -1 + x4 - x3 - 5x - 2
= 2x5+(5x4+x4)+( -x3- x3) +x2+(- x - 5x) + (- 1 - 2)
=2x5 + 6x4 - 2x3 +x2 -6x -3
------------------------------------------------------------------------------------------------------------------------
P(x)-Q(x)=(2x5+ 5x4 - x3+ x2-x - 1)-(-x4 + x3 +5x +2 )
TIẾT 61: CỘNG, TRỪ ĐA THỨC MỘT BIẾN
TIẾT 61: CỘNG, TRỪ ĐA THỨC MỘT BIẾN
1. Cộng hai đa thức một biến :
Ví dụ : Cho hai đa thức
P(x) = 2x5+ 5x4 - x3 + x2 - x -1
Q(x) = -x4 + x3 +5x + 2
Hãy tính tổng: P(x) + Q(x)=?
TIẾT 61: CỘNG, TRỪ
ĐA THỨC MỘT BIẾN
1.Cộng hai đa thức một biến :
Ví dụ 1 : Cho hai thức
P(x) = 2x5+ 5x4 – x3 + x2 – x -1 Q(x) = -x4 + x3 +5x + 2
Hãy tính tổng P(x) + Q(x)
Giải :
Cách 1: ( Thực hiện theo cách
cộng đa thức ở bài 6)
Ta sẽ cộng 2 đa thức trên tương
tự như cộng 2 số theo cột dọc
Tiết 61 - §8. CỘNG, TRỪ ĐA THỨC MỘT BIẾN
Ví dụ 1. Tính tổng của hai đa thức sau :
1. Cộng hai đa thức một biến
P(x) = 2x5 5x4 x3 + x2 – x - 1
và Q(x) = -x4 + x3 + 5x + 2
Lời giải
Cách 2 : (cộng theo cột dọc)
P(x) = 2x5 5x4 x3 + x2 – x - 1
Q(x) = - x4 + x3 + 5x + 2
+
P(x) + Q(x) =
2x5
5x4 + (-x4) =
-x3 + x3 =
[(5 + (-1)]x4 = 4x4
0
+ 4x4
+ x2
-x + 5x =
(-1 + 5)x = 4x
-1 + 2 = 1
+ 4x
+ 1
TIẾT 61: CỘNG, TRỪ
ĐA THỨC MỘT BIẾN
1.Cộng hai đa thức một biến :
Ví dụ : Cho hai thức
P(x) = 2x5+ 5x4 – x3 + x2 – x -1 Q(x) = -x4 + x3 +5x + 2
2. Trừ hai đa thức một biến :
Cách 1:
P(x)-Q(x)
= (2x5+ 5x4 - x3 + x2 - x - 1)
-(-x4 + x3 +5x +2 )
Giải :
Cách 1: ( Thực hiện theo cách
cộng đa thức bất kì )
Cách 2: (Thực hiện theo cột dọc)
Ví dụ : Tính P(x) - Q(x)
với P(x) và Q(x) đã cho ở phần 1 .
= 2x5+ 5x4 - x3 + x2 - x -1
+ x4- x3 -5x - 2
=2x5+(5x4+x4)+( -x3-x3) +x2
+(-x -5x)+(-1-2)
=2x5 + 6x4 - 2x3 +x2 -6x -3
Chú ý bỏ ngoặc
Có dấu trừ đằng trước
Tính P(x)-Q(x)
tương tự như trừ 2 đa thức bất kì
Giải :
Cách 1: ( Thực hiện theo cách
trừ đa thức bất kì )
TIẾT 61: CỘNG, TRỪ
ĐA THỨC MỘT BIẾN
1.Cộng hai đa thức một biến :
Cách 1: ( Thực hiện theo cách
cộng đa thức ở bài 6 )
Cách 2:(Thực hiện theo cột dọc)
Cách 2:
Q(x) =
P(x) = 2x5+ 5x4 - x3 + x2 - x - 1
-x4
+ x3
+5x + 2
-
P(x)-Q(x) =
-2x3
-x3-x3=
2x5-0=
+6x4
5x4-(-x4)=
+x2
-6x
-x - 5x =
-1 - 2 =
-3
NHÁP
2. Trừ hai đa thức một biến :
Ví dụ : Tính P(x)-Q(x)
với P(x) và Q(x) đã cho ở phần 1 .
Giải :
Cách 1: ( Thực hiện theo cách
trừ đa thức bất kì )
2x5
x2- 0 =
?
?
?
?
?
?
Cách 2:
TIẾT 61: CỘNG, TRỪ
ĐA THỨC MỘT BIẾN
1.Cộng hai đa thức một biến :
Cách 1: ( Thực hiện theo cách
cộng đa thức ở bài 6 )
Cách 2:(Thực hiện theo cột dọc)
P(x) = 2x5+ 5x4 - x3 + x2 - x - 1
_
Q(x) = - x4 + x3 +5x + 2
P(x)-Q(x)= 2x5+6x4 -2x3+ x2 -6x -3
2. Trừ hai đa thức một biến :
Ví dụ : Tính P(x)-Q(x)
với P(x) và Q(x) đã cho ở phần 1 .
Cách 2:
Giải :
Cách 1: ( Thực hiện theo cách
trừ đa thức ổ bài 6 )
Cách 2:(Thực hiện theo cột dọc)
TIẾT 61: CỘNG, TRỪ
ĐA THỨC MỘT BIẾN
1.Cộng hai đa thức một biến :
Cách 1: ( Thực hiện theo cách
cộng đa thức bất kì )
Cách 2:(Thực hiện theo cột dọc)
P(x) = 2x5+ 5x4 - x3 + x2 - x- 1
+
-Q(x) = x4 - x3 -5x - 2
P(x)-Q(x)= 2x5+ 6x4 -2x3+ x2 -6x -3
2. Trừ hai đa thức một biến :
Ví dụ : Tính P(x)-Q(x)
với P(x) và Q(x) đã cho ở phần 1 .
Cách trình bày khác của cách 2
Giải :
Cách 1: ( Thực hiện theo cách
trừ đa thức bất kì )
Cách 2:(Thực hiện theo cột dọc)
P(x)= 2x5+ 5x4 - x3 + x2 - x -1
_
Q(x)= - x4 + x3 +5x +2
P(x)-Q(x)= 2x5+6x4 -2x3+x2 -6x-3
P(x)-Q(x)=
P(x) + [-Q(x)]
Hãy xác định đa thức - Q(x) ?
Dựa vào phép trừ số nguyên,
Em hãy cho biết: 5- 7 = 5 + (-7)
P(x) – Q(x) = ?
Q(x) = -(-x4 + x3 + 5x +2)
Q(x) = (-x4 + x3 + 5x +2)
= x4 - x3 -5x - 2
TIẾT 61: CỘNG, TRỪ
ĐA THỨC MỘT BIẾN
1.Cộng hai đa thức một biến :
Cách 1: ( Thực hiện theo cách
cộng đa thức bất kì )
Cách 2:(Thực hiện theo cột dọc)
P(x) = 2x5+ 5x4 - x3 + x2 - x- 1
+
-Q(x) = x4 - x3 -5x - 2
P(x)-Q(x)= 2x5+ 6x4 -2x3+ x2 -6x -3
2. Trừ hai đa thức một biến :
Ví dụ : Tính P(x)-Q(x)
với P(x) và Q(x) đã cho ở phần 1 .
Cách trình bày khác của cách 2
Giải :
Cách 1: ( Thực hiện theo cách
trừ đa thức bất kì )
Cách 2:(Thực hiện theo cột dọc)
P(x)= 2x5+ 5x4 - x3 + x2 - x -1
_
Q(x)= - x4 + x3 +5x +2
P(x)-Q(x)= 2x5+6x4 -2x3+x2 -6x-3
P(x) + [- Q(x)]
P(x) = 2x5+ 5x4 - x3 + x2 - x -1
+
-Q(x) = + x4 - x3 -5x -2
= 2x5+6x4 -2x3+x2 -6x-3
TIẾT 61: CỘNG, TRỪ
ĐA THỨC MỘT BIẾN
1.Cộng hai đa thức một biến :
2. Trừ hai đa thức một biến :
*)Chú ý :
Để cộng hoặc trừ hai đa thức một biến ,
ta có thể thực hiện theo một trong hai cách sau :
Cách 1 : Thực hiện theo cách cộng trừ đa
thức đã học ở Bài 6 .
Cách 2 : Sắp xếp các hạng tử của hai đa
thức cùng theo luỹ thừa giảm
( hoặc tăng) của biến , rồi đặt
phép tính theo cột dọc tương tự
như cộng , trừ các số .
(chú ý đặt các đơn thức đồng dạng ở cùng một cột )
Thảo luận nhóm 2 phút
?1
Hết giờ !
Cho hai đa thức :
M(x) = x4 + 5x3 - x2 + x - 0,5
N(x) = 3x4 - 5x2 - x - 2,5
Hãy tính: a) M(x) + N(x) và
b) M(x) - N(x)
a) M(x)= x4+5x3 -x2 + x - 0,5
+
N(x)=3x4 -5x2 -x -2,5
M(x)+N(x) =4x4+5x3 -6x2 - 3
Bài giải :
b) M(x)= x4+5x3 -x2 + x - 0,5
-
N(x)=3x4 -5x2 -x -2,5
M(x)-N(x) =-2x4+5x3+4x2 +2x +2
Trong các cách đặt phép tính sau, cách nào đặt đúng, cách nào đặt sai ? Hãy thực hiện phép tính ở cách đặt đúng
P(x) = 2x3 – x - 1
Q(x) = x2 - 5x + 2
+
P(x) + Q(x) =
P(x) = 2x3 – x - 1
Q(x) = 2 - 5x + x2
-
P(x) - Q(x) =
Cách 1
Cách 2
Cách 3
P(x) = 2x3 – x - 1
Q(x) = x2 - 5x + 2
+
P(x) + Q(x) =
Cách 4
P(x) = - 1 – x + 2x3
Q(x) = 2 - 5x + x2
-
P(x) - Q(x) =
2x3 + x2 - 6x + 1
- 3 + 4x – x2 + 2x3
Bài tập:
Luật chơi: Có 3 hộp quà khác nhau, trong mỗi hộp quà chứa một câu hỏi và một phần quà hấp dẫn. Nếu trả lời đúng câu hỏi thì món quà sẽ hiện ra. Nếu trả lời sai thì món quà không hiện ra. Thời gian suy nghĩ cho mỗi câu là 15 giây.
hộp quà may mắn
HỘP QUÀ MÀU VÀNG
Cho G(x)= - 4x5 + 3 – 2x2 – x + 2x3
thì -G(x) = 4x5 - 3 + 2x2 + x - 2x3
Đúng
SAI
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
HỘP QUÀ MÀU XANH
Bạn Nga tính A(x) – B(x) như sau, theo em bạn giải đúng hay sai? Giải thích?
Sai
Đúng
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
A(x) = 2x5 - 2x3 - x - 5/3
- B(x) = x5 - x3 - x2 + 5x - 1/3
A(x) - B(x) =
x5 - 3x3 -x2 + 4x - 2
+
Cho hai đa thức:
A(x) = 2x5 - 2x3 - x -
B(x) = - x5 + x3 + x2 - 5x +
HỘP QUÀ MÀU TÍM
Đúng
Sai
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Bạn An tính P(x) + Q(x) + H(x) như sau, theo em bạn giải đúng hay sai? Giải thích?
+5
P(x)+Q(x)+H(x)=
P(x)= x3 -2x2 + x +1
+ Q(x)= -x3 +x2 +1
H(x)= x2 +2x +3
3x
PHẦN THUỞNG LÀ ĐIỂM 10
Bạn đã trả lời sai rồi và một số hình ảnh “Đặc biệt” để giải trí.
PHẦN THƯỞNG LÀ:
ĐIỂM 10
Bài 48 (trang 45 SGK). Chọn đa thức mà em cho là kết quả đúng :
(2x3 – 2x + 1) - (3x2 + 4x – 1) = ?
Bài tập
Tiết 61: CỘNG TRỪ ĐA THỨC MỘT BIẾN
1.Cộng hai đa thức một biến :
Cách 1: ( Thực hiện theo cách cộng đa thức bất kì )
Cách 2:
(Thực hiện theo cột dọc)
P(x)= 2x5+5x4 -x3+ x2 - x -1
Q(x)= -x4+x3 +5x+2
P(x)+Q(x)=2x5 +4x4 + x2 +4x+1
+
2. Trừ hai đa thức một biến :
Cách 1: ( Thực hiện theo cách trừ đa thức bất kì )
Cách 2:(Thực hiện theo cột dọc)
P(x)= 2x5 + 5x4 - x3 + x2 - x -1
_
Q(x)= - x4 + x3 +5x +2
P(x)-Q(x)= 2x5+6x4 -2x3 +x2 -6x -3
HƯỚNG DẪN VỀ NHÀ
Nắm vững cách cộng , trừ các đa thức một biến và chọn cách làm phù hợp cho từng bài
-Làm các bài tập : 44 ; 45; 46 ;48 ; 50 ;52 (SGK/ 45+46 )
- Chú ý : Khi lấy đa thức đối của một đa thức phải lấy đối tất cả các hạng tử của đa thức đó .
Hướng dẫn bài 45
a) Vì P(x) + Q(x) = x5 – 2x2 + 1 => Q(x) = (x5 – 2x2 + 1) – P(x)
b) Vì P(x) – R(x) = x3 => R(x) = P(x) – x3
Thay đa thức P(x) vào rồi thực hiện phép tính
CẢM ƠN QUÝ THẦY CÔ
CHÚC CÁC EM HỌC TỐT
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Hoàng Mai
Dung lượng: |
Lượt tài: 2
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)