Chương IV. §8. Cộng, trừ đa thức một biến
Chia sẻ bởi Lê Văn Thuần |
Ngày 01/05/2019 |
47
Chia sẻ tài liệu: Chương IV. §8. Cộng, trừ đa thức một biến thuộc Đại số 7
Nội dung tài liệu:
CHÀO MỪNG QUÝ THẦY CÔ ĐẾN
DỰ GIỜ LỚP 7/1
Môn: Đại số 7
TỔ: TỰ NHIÊN
Giáo viên dạy: L Van Thu?n
TRƯỜNG THCS LÝ TỰ TRỌNG
Thu gọn đa thức A(x) = 3x2 – 5x + 1 . Đa thức A(x)có bậc là 2.Các hệ số khác 0
củaA(x) là 3;-5;1 của lũy thừa bậc 2; 1; 0.Hệ số cao nhất là 3 , hệ số tự do là 1.
.Đa thức 1 biến là tổng của những đơn thức của cùng 1 biến.
.Mỗi số cũng được coi là 1 đa thức 1 biến.
KiỂM TRA BÀI CỦ
Đa thức 1 biến là gì ?
Tìm bậc của đa thức A(x) = 2x3+3x2 – 5x – 2x3 + 1.Nêu các hệ số khác 0 của đa thức A(x).Nêu hệ số cao nhất , hệ số tự do của nó?
CỘNG , TRỪ ĐA THỨC MỘT BiẾN
Cộng , trừ đa thức 1 biến có gì mới so với cách cộng , trừ đa thức ?
CHƯƠNG IV
BÀI 8
BÀI MỚI
1.Cộng hai đa thức 1 biến
Ví dụ: Cho 2 đa thức:
P(x) = 2x5+5x4 – x3+x2-x-1
Q(x) = -x4 + x3 + 5x +2
Hãy tính tổng của chúng ?
Giải: Cách 1:
P(x) + Q(x) =(2x5+5x4 – x3+x2-x-1)+(-x4 + x3 + 5x +2)
= 2x5+5x4 – x3+x2-x-1-x4 + x3 + 5x +2
=2x5+(5x4-x4) +(– x3 + x3) +x2 +(– x + 5x)+ (2 – 1)
=2x5+ 4x4 + x2 + 4x +1
Cách 2:
P(x) = 2x5+5x4 – x3 + x2 – x – 1
+ Q(x) = -x4 + x3 + 5x +2
P(x) + Q(x) = 2x5+ 4x4 + x2 + 4x +1
CỘNG , TRỪ ĐA THỨC MỘT BiẾN
CỘNG , TRỪ ĐA THỨC MỘT BiẾN
2.Trừ hai đa thức một biến
Ví dụ: Cho 2 đa thức:
P(x) = 2x5+5x4 – x3+x2-x-1
Q(x) = -x4 + x3 + 5x +2
Hãy tính hiệu của chúng ?
Giải: Cách 1:
P(x) – Q(x) =(2x5+5x4 – x3+x2-x-1) – (-x4 + x3 + 5x +2)
= 2x5+5x4 – x3+x2 – x – 1 +x4 – x3 – 5x – 2
=2x5+(5x4+x4) +(– x3 – x3) +x2 +(– x – 5x)+(–2 – 1)
=2x5+ 6x4 – 2x3 + x2 – 6x – 3
Cách 2:
_ P(x) = 2x5+5x4 – x3 + x2 – x – 1
Q(x) = -x4 + x3 + 5x +2
P(x) - Q(x) = 2x5+ 6x4 – 2x3+x2–6x –3
Chú ý
Để cộng hay trừ đa thức 1 biến , ta có thể thực hiện 1 trong 2 cách sau:
CỘNG , TRỪ ĐA THỨC MỘT BiẾN
Cách 1: Cộng , trừ đa thức theo cách đã học.
Cách 2 :Sắp xếp các hạng tử của 2 đa thức cùng theo lũy thừa giảm (hay tăng) của biến, rồi đặt phép tính theo cột dọc tương tự như phép cộng ,trừ các số ( chú ý đặt các đơn thức đồng dạng ở cùng 1 cột)
M(x) = x4 + 5x3 – x2 + x – 0,5
+N(x) = 3x4 –5x2 – x – 2,5
M(x) + N(x)=4x4 + 5x3–6x2 – 3
CŨNG CỐ
?1. Cho 2 đa thức: M(x) = x4 + 5x3 – x2 + x – 0,5
N(x) = 3x4 –5x2 – x – 2,5
Hãy tính M(x) + N(x) và M(x) – N(x).
_ M(x) = x4 + 5x3 – x2 + x – 0,5
N(x) = 3x4 –5x2 – x – 2,5
M(x) – N(x) = -2x4+5x3+4x2+2x + 2
Bài tập44/SGK: Cho 2 đa thức P(x) = – 5x3 –1/3 + 8x4+x2
Q(x) = x2 – 5x –2x3 +x4 –2/3
Hãy tính P(x)+ Q(x) và P(x) – Q(x) .
P(x) =8x4 – 5x3 +x2 – 1/3
+ Q(x) = x4 –2x3 + x2 – 5x –2/3
P(x)–Q(x) = 9x4–7x3 +2x2–5x – 1
_ P(x) =8x4 – 5x3 +x2 – 1/3
Q(x) = x4 –2x3 + x2 – 5x –2/3
P(x)–Q(x) = 7x4–3x3 +5x +1/3
Giải
CỘNG , TRỪ ĐA THỨC MỘT BiẾN
HƯỚNG DẪN HỌC Ở NHÀ
Bài tập:45 53/SGK
Bài tập : 38 42/SBT
Đọc bài cộng , trừ :đa thức , đa thức 1 biến.
DỰ GIỜ LỚP 7/1
Môn: Đại số 7
TỔ: TỰ NHIÊN
Giáo viên dạy: L Van Thu?n
TRƯỜNG THCS LÝ TỰ TRỌNG
Thu gọn đa thức A(x) = 3x2 – 5x + 1 . Đa thức A(x)có bậc là 2.Các hệ số khác 0
củaA(x) là 3;-5;1 của lũy thừa bậc 2; 1; 0.Hệ số cao nhất là 3 , hệ số tự do là 1.
.Đa thức 1 biến là tổng của những đơn thức của cùng 1 biến.
.Mỗi số cũng được coi là 1 đa thức 1 biến.
KiỂM TRA BÀI CỦ
Đa thức 1 biến là gì ?
Tìm bậc của đa thức A(x) = 2x3+3x2 – 5x – 2x3 + 1.Nêu các hệ số khác 0 của đa thức A(x).Nêu hệ số cao nhất , hệ số tự do của nó?
CỘNG , TRỪ ĐA THỨC MỘT BiẾN
Cộng , trừ đa thức 1 biến có gì mới so với cách cộng , trừ đa thức ?
CHƯƠNG IV
BÀI 8
BÀI MỚI
1.Cộng hai đa thức 1 biến
Ví dụ: Cho 2 đa thức:
P(x) = 2x5+5x4 – x3+x2-x-1
Q(x) = -x4 + x3 + 5x +2
Hãy tính tổng của chúng ?
Giải: Cách 1:
P(x) + Q(x) =(2x5+5x4 – x3+x2-x-1)+(-x4 + x3 + 5x +2)
= 2x5+5x4 – x3+x2-x-1-x4 + x3 + 5x +2
=2x5+(5x4-x4) +(– x3 + x3) +x2 +(– x + 5x)+ (2 – 1)
=2x5+ 4x4 + x2 + 4x +1
Cách 2:
P(x) = 2x5+5x4 – x3 + x2 – x – 1
+ Q(x) = -x4 + x3 + 5x +2
P(x) + Q(x) = 2x5+ 4x4 + x2 + 4x +1
CỘNG , TRỪ ĐA THỨC MỘT BiẾN
CỘNG , TRỪ ĐA THỨC MỘT BiẾN
2.Trừ hai đa thức một biến
Ví dụ: Cho 2 đa thức:
P(x) = 2x5+5x4 – x3+x2-x-1
Q(x) = -x4 + x3 + 5x +2
Hãy tính hiệu của chúng ?
Giải: Cách 1:
P(x) – Q(x) =(2x5+5x4 – x3+x2-x-1) – (-x4 + x3 + 5x +2)
= 2x5+5x4 – x3+x2 – x – 1 +x4 – x3 – 5x – 2
=2x5+(5x4+x4) +(– x3 – x3) +x2 +(– x – 5x)+(–2 – 1)
=2x5+ 6x4 – 2x3 + x2 – 6x – 3
Cách 2:
_ P(x) = 2x5+5x4 – x3 + x2 – x – 1
Q(x) = -x4 + x3 + 5x +2
P(x) - Q(x) = 2x5+ 6x4 – 2x3+x2–6x –3
Chú ý
Để cộng hay trừ đa thức 1 biến , ta có thể thực hiện 1 trong 2 cách sau:
CỘNG , TRỪ ĐA THỨC MỘT BiẾN
Cách 1: Cộng , trừ đa thức theo cách đã học.
Cách 2 :Sắp xếp các hạng tử của 2 đa thức cùng theo lũy thừa giảm (hay tăng) của biến, rồi đặt phép tính theo cột dọc tương tự như phép cộng ,trừ các số ( chú ý đặt các đơn thức đồng dạng ở cùng 1 cột)
M(x) = x4 + 5x3 – x2 + x – 0,5
+N(x) = 3x4 –5x2 – x – 2,5
M(x) + N(x)=4x4 + 5x3–6x2 – 3
CŨNG CỐ
?1. Cho 2 đa thức: M(x) = x4 + 5x3 – x2 + x – 0,5
N(x) = 3x4 –5x2 – x – 2,5
Hãy tính M(x) + N(x) và M(x) – N(x).
_ M(x) = x4 + 5x3 – x2 + x – 0,5
N(x) = 3x4 –5x2 – x – 2,5
M(x) – N(x) = -2x4+5x3+4x2+2x + 2
Bài tập44/SGK: Cho 2 đa thức P(x) = – 5x3 –1/3 + 8x4+x2
Q(x) = x2 – 5x –2x3 +x4 –2/3
Hãy tính P(x)+ Q(x) và P(x) – Q(x) .
P(x) =8x4 – 5x3 +x2 – 1/3
+ Q(x) = x4 –2x3 + x2 – 5x –2/3
P(x)–Q(x) = 9x4–7x3 +2x2–5x – 1
_ P(x) =8x4 – 5x3 +x2 – 1/3
Q(x) = x4 –2x3 + x2 – 5x –2/3
P(x)–Q(x) = 7x4–3x3 +5x +1/3
Giải
CỘNG , TRỪ ĐA THỨC MỘT BiẾN
HƯỚNG DẪN HỌC Ở NHÀ
Bài tập:45 53/SGK
Bài tập : 38 42/SBT
Đọc bài cộng , trừ :đa thức , đa thức 1 biến.
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Lê Văn Thuần
Dung lượng: |
Lượt tài: 3
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)