Chương IV. §8. Cộng, trừ đa thức một biến
Chia sẻ bởi Trân Thị Minh Xương |
Ngày 01/05/2019 |
41
Chia sẻ tài liệu: Chương IV. §8. Cộng, trừ đa thức một biến thuộc Đại số 7
Nội dung tài liệu:
KIỂM TRA BÀI CŨ
Bài tập : Cho hai đa thức
P(x) = 2x5+ 5x4 - x3 + x2 - x -1
Q(x) = -x4 + x3 +5x + 2
Hãy tÝnh: a) P(x) + Q(x)
b) P(x) - Q(x)
P(x) = 2x5+ 5x4 - x3 + x2 - x -1
Q(x) = -x4 + x3 +5x + 2
Giải :
+ 5x4
- x4
= 2x5
- x3
+x3
+ x2
- x
+5x
-1
+ 2
= 2x5 + 4x4 + x2 +4x + 1
= 2x5+(5x4-x4)+(- x3+x3)+ x2 +(- x +5x)+( -1+2)
a)P(x)+Q(x)=(2x5+ 5x4 - x3 + x2 - x -1)+( -x4 +x3 +5x + 2 )
= 2x5+ 5x4 - x3 + x2 - x -1 + x4 - x3 - 5x - 2
= 2x5+(5x4+x4)+( -x3- x3) +x2+(- x - 5x) + (- 1 - 2)
=2x5 + 6x4 - 2x3 +x2 -6x -3
------------------------------------------------------------------------------------------------------------------------
b) P(x)-Q(x)=(2x5+ 5x4 - x3+ x2-x - 1)-(-x4 + x3 +5x +2 )
1.Cộng hai đa thức một biến :
Ví dụ 1 : Cho hai thức
P(x) = 2x5+ 5x4 – x3 + x2 – x -1 Q(x) = -x4 + x3 +5x + 2
Hãy tính tổng P(x) + Q(x)
Giải :
Cách 1: ( Thực hiện theo cách
cộng đa thức ở bài 6)
Ta sẽ cộng 2 đa thức trên tương
tự như cộng 2 số theo cột dọc
Ví dụ 1. Tính tổng của hai đa thức sau :
1. Cộng hai đa thức một biến
P(x) = 2x5 5x4 x3 + x2 – x - 1
và Q(x) = -x4 + x3 + 5x + 2
Lời giải
Cách 2 : (cộng theo cột dọc)
P(x) = 2x5 5x4 x3 + x2 – x - 1
Q(x) = - x4 + x3 + 5x + 2
+
P(x) + Q(x) =
2x5
5x4 + (-x4) =
-x3 + x3 =
[(5 + (-1)]x4 = 4x4
0
+ 4x4
+ x2
-x + 5x =
(-1 + 5)x = 4x
-1 + 2 = 1
+ 4x
+ 1
1.Cộng hai đa thức một biến :
Cách 1: ( Thực hiện theo cách
cộng đa thức ở bài 6 )
Cách 2:(Thực hiện theo cột dọc)
Cách 2:
Q(x) =
P(x) = 2x5+ 5x4 - x3 + x2 - x - 1
-x4
+ x3
+5x + 2
-
P(x)-Q(x) =
-2x3
-x3-x3=
2x5-0=
+6x4
5x4-(-x4)=
+x2
-6x
-x - 5x =
-1 - 2 =
-3
NHÁP
2. Trừ hai đa thức một biến :
Ví dụ : Tính P(x)-Q(x)
với P(x) và Q(x) đã cho ở phần 1 .
Giải :
Cách 1: ( Thực hiện theo cách
trừ đa thức bất kì )
2x5
x2- 0 =
?
?
?
?
?
?
Cách 2:
1.Cộng hai đa thức một biến :
Cách 1: ( Thực hiện theo cách
cộng đa thức ở bài 6 )
Cách 2:(Thực hiện theo cột dọc)
P(x) = 2x5+ 5x4 - x3 + x2 - x - 1
_
Q(x) = - x4 + x3 +5x + 2
P(x)-Q(x)= 2x5+6x4 -2x3+ x2 -6x -3
2. Trừ hai đa thức một biến :
Ví dụ : Tính P(x)-Q(x)
với P(x) và Q(x) đã cho ở phần 1 .
Cách 2:
Giải :
Cách 1: ( Thực hiện theo cách
trừ đa thức ổ bài 6 )
Cách 2:(Thực hiện theo cột dọc)
1.Cộng hai đa thức một biến :
Cách 1: ( Thực hiện theo cách
cộng đa thức bất kì )
Cách 2:(Thực hiện theo cột dọc)
P(x) = 2x5+ 5x4 - x3 + x2 - x- 1
+
-Q(x) = x4 - x3 -5x - 2
P(x)-Q(x)= 2x5+ 6x4 -2x3+ x2 -6x -3
2. Trừ hai đa thức một biến :
Ví dụ : Tính P(x)-Q(x)
với P(x) và Q(x) đã cho ở phần 1 .
Cách trình bày khác của cách 2
Giải :
Cách 1: ( Thực hiện theo cách
trừ đa thức bất kì )
Cách 2:(Thực hiện theo cột dọc)
P(x)= 2x5+ 5x4 - x3 + x2 - x -1
_
Q(x)= - x4 + x3 +5x +2
P(x)-Q(x)= 2x5+6x4 -2x3+x2 -6x-3
P(x)-Q(x)=
P(x) + [-Q(x)]
Hãy xác định đa thức - Q(x) ?
Dựa vào phép trừ số nguyên,
Em hãy cho biết: 5- 7 = 5 + (-7)
P(x) – Q(x) = ?
Q(x) = -(-x4 + x3 + 5x +2)
Q(x) = (-x4 + x3 + 5x +2)
= x4 - x3 -5x - 2
1.Cộng hai đa thức một biến :
Cách 1: ( Thực hiện theo cách
cộng đa thức bất kì )
Cách 2:(Thực hiện theo cột dọc)
P(x) = 2x5+ 5x4 - x3 + x2 - x- 1
+
-Q(x) = x4 - x3 -5x - 2
P(x)-Q(x)= 2x5+ 6x4 -2x3+ x2 -6x -3
2. Trừ hai đa thức một biến :
Ví dụ : Tính P(x)-Q(x)
với P(x) và Q(x) đã cho ở phần 1 .
Cách trình bày khác của cách 2
Giải :
Cách 1: ( Thực hiện theo cách
trừ đa thức bất kì )
Cách 2:(Thực hiện theo cột dọc)
P(x)= 2x5+ 5x4 - x3 + x2 - x -1
_
Q(x)= - x4 + x3 +5x +2
P(x)-Q(x)= 2x5+6x4 -2x3+x2 -6x-3
P(x) + [- Q(x)]
P(x) = 2x5+ 5x4 - x3 + x2 - x -1
+
-Q(x) = + x4 - x3 -5x -2
= 2x5+6x4 -2x3+x2 -6x-3
Thảo luận nhóm 2 phút
?1 Cho hai đa thức :
M(x) = x4 + 5x3 - x2 + x - 0,5
N(x) = 3x4 - 5x2 - x - 2,5
Hãy tính: a) M(x) + N(x) và
b) M(x) - N(x)
a) M(x)= x4+5x3 -x2 + x - 0,5
+
N(x)=3x4 -5x2 -x -2,5
M(x)+N(x) =4x4+5x3 -6x2 - 3
Bài giải :
b) M(x)= x4+5x3 -x2 + x - 0,5
-
N(x)=3x4 -5x2 -x -2,5
M(x)-N(x) =-2x4+5x3+4x2 +2x +2
Tiết 60: CỘNG TRỪ ĐA THỨC MỘT BIẾN
1.Cộng hai đa thức một biến :
Cách 1: ( Thực hiện theo cách cộng đa thức bất kì )
Cách 2:
(Thực hiện theo cột dọc)
P(x)= 2x5+5x4 -x3+ x2 - x -1
Q(x)= -x4+x3 +5x+2
P(x)+Q(x)=2x5 +4x4 + x2 +4x+1
+
2. Trừ hai đa thức một biến :
Cách 1: ( Thực hiện theo cách trừ đa thức bất kì )
Cách 2:(Thực hiện theo cột dọc)
P(x)= 2x5 + 5x4 - x3 + x2 - x -1
_
Q(x)= - x4 + x3 +5x +2
P(x)-Q(x)= 2x5+6x4 -2x3 +x2 -6x -3
HƯỚNG DẪN VỀ NHÀ
Nắm vững cách cộng , trừ các đa thức một biến và chọn cách làm phù hợp cho từng bài
-Làm các bài tập : 44 ; 45; 46 ;48 ; 50 ;52 (SGK/ 45+46 )
- Chú ý : Khi lấy đa thức đối của một đa thức phải lấy đối tất cả các hạng tử của đa thức đó .
Hướng dẫn bài 45
a) Vì P(x) + Q(x) = x5 – 2x2 + 1 => Q(x) = (x5 – 2x2 + 1) – P(x)
b) Vì P(x) – R(x) = x3 => R(x) = P(x) – x3
Thay đa thức P(x) vào rồi thực hiện phép tính
CHÚC CÁC EM HỌC TỐT
Bài tập : Cho hai đa thức
P(x) = 2x5+ 5x4 - x3 + x2 - x -1
Q(x) = -x4 + x3 +5x + 2
Hãy tÝnh: a) P(x) + Q(x)
b) P(x) - Q(x)
P(x) = 2x5+ 5x4 - x3 + x2 - x -1
Q(x) = -x4 + x3 +5x + 2
Giải :
+ 5x4
- x4
= 2x5
- x3
+x3
+ x2
- x
+5x
-1
+ 2
= 2x5 + 4x4 + x2 +4x + 1
= 2x5+(5x4-x4)+(- x3+x3)+ x2 +(- x +5x)+( -1+2)
a)P(x)+Q(x)=(2x5+ 5x4 - x3 + x2 - x -1)+( -x4 +x3 +5x + 2 )
= 2x5+ 5x4 - x3 + x2 - x -1 + x4 - x3 - 5x - 2
= 2x5+(5x4+x4)+( -x3- x3) +x2+(- x - 5x) + (- 1 - 2)
=2x5 + 6x4 - 2x3 +x2 -6x -3
------------------------------------------------------------------------------------------------------------------------
b) P(x)-Q(x)=(2x5+ 5x4 - x3+ x2-x - 1)-(-x4 + x3 +5x +2 )
1.Cộng hai đa thức một biến :
Ví dụ 1 : Cho hai thức
P(x) = 2x5+ 5x4 – x3 + x2 – x -1 Q(x) = -x4 + x3 +5x + 2
Hãy tính tổng P(x) + Q(x)
Giải :
Cách 1: ( Thực hiện theo cách
cộng đa thức ở bài 6)
Ta sẽ cộng 2 đa thức trên tương
tự như cộng 2 số theo cột dọc
Ví dụ 1. Tính tổng của hai đa thức sau :
1. Cộng hai đa thức một biến
P(x) = 2x5 5x4 x3 + x2 – x - 1
và Q(x) = -x4 + x3 + 5x + 2
Lời giải
Cách 2 : (cộng theo cột dọc)
P(x) = 2x5 5x4 x3 + x2 – x - 1
Q(x) = - x4 + x3 + 5x + 2
+
P(x) + Q(x) =
2x5
5x4 + (-x4) =
-x3 + x3 =
[(5 + (-1)]x4 = 4x4
0
+ 4x4
+ x2
-x + 5x =
(-1 + 5)x = 4x
-1 + 2 = 1
+ 4x
+ 1
1.Cộng hai đa thức một biến :
Cách 1: ( Thực hiện theo cách
cộng đa thức ở bài 6 )
Cách 2:(Thực hiện theo cột dọc)
Cách 2:
Q(x) =
P(x) = 2x5+ 5x4 - x3 + x2 - x - 1
-x4
+ x3
+5x + 2
-
P(x)-Q(x) =
-2x3
-x3-x3=
2x5-0=
+6x4
5x4-(-x4)=
+x2
-6x
-x - 5x =
-1 - 2 =
-3
NHÁP
2. Trừ hai đa thức một biến :
Ví dụ : Tính P(x)-Q(x)
với P(x) và Q(x) đã cho ở phần 1 .
Giải :
Cách 1: ( Thực hiện theo cách
trừ đa thức bất kì )
2x5
x2- 0 =
?
?
?
?
?
?
Cách 2:
1.Cộng hai đa thức một biến :
Cách 1: ( Thực hiện theo cách
cộng đa thức ở bài 6 )
Cách 2:(Thực hiện theo cột dọc)
P(x) = 2x5+ 5x4 - x3 + x2 - x - 1
_
Q(x) = - x4 + x3 +5x + 2
P(x)-Q(x)= 2x5+6x4 -2x3+ x2 -6x -3
2. Trừ hai đa thức một biến :
Ví dụ : Tính P(x)-Q(x)
với P(x) và Q(x) đã cho ở phần 1 .
Cách 2:
Giải :
Cách 1: ( Thực hiện theo cách
trừ đa thức ổ bài 6 )
Cách 2:(Thực hiện theo cột dọc)
1.Cộng hai đa thức một biến :
Cách 1: ( Thực hiện theo cách
cộng đa thức bất kì )
Cách 2:(Thực hiện theo cột dọc)
P(x) = 2x5+ 5x4 - x3 + x2 - x- 1
+
-Q(x) = x4 - x3 -5x - 2
P(x)-Q(x)= 2x5+ 6x4 -2x3+ x2 -6x -3
2. Trừ hai đa thức một biến :
Ví dụ : Tính P(x)-Q(x)
với P(x) và Q(x) đã cho ở phần 1 .
Cách trình bày khác của cách 2
Giải :
Cách 1: ( Thực hiện theo cách
trừ đa thức bất kì )
Cách 2:(Thực hiện theo cột dọc)
P(x)= 2x5+ 5x4 - x3 + x2 - x -1
_
Q(x)= - x4 + x3 +5x +2
P(x)-Q(x)= 2x5+6x4 -2x3+x2 -6x-3
P(x)-Q(x)=
P(x) + [-Q(x)]
Hãy xác định đa thức - Q(x) ?
Dựa vào phép trừ số nguyên,
Em hãy cho biết: 5- 7 = 5 + (-7)
P(x) – Q(x) = ?
Q(x) = -(-x4 + x3 + 5x +2)
Q(x) = (-x4 + x3 + 5x +2)
= x4 - x3 -5x - 2
1.Cộng hai đa thức một biến :
Cách 1: ( Thực hiện theo cách
cộng đa thức bất kì )
Cách 2:(Thực hiện theo cột dọc)
P(x) = 2x5+ 5x4 - x3 + x2 - x- 1
+
-Q(x) = x4 - x3 -5x - 2
P(x)-Q(x)= 2x5+ 6x4 -2x3+ x2 -6x -3
2. Trừ hai đa thức một biến :
Ví dụ : Tính P(x)-Q(x)
với P(x) và Q(x) đã cho ở phần 1 .
Cách trình bày khác của cách 2
Giải :
Cách 1: ( Thực hiện theo cách
trừ đa thức bất kì )
Cách 2:(Thực hiện theo cột dọc)
P(x)= 2x5+ 5x4 - x3 + x2 - x -1
_
Q(x)= - x4 + x3 +5x +2
P(x)-Q(x)= 2x5+6x4 -2x3+x2 -6x-3
P(x) + [- Q(x)]
P(x) = 2x5+ 5x4 - x3 + x2 - x -1
+
-Q(x) = + x4 - x3 -5x -2
= 2x5+6x4 -2x3+x2 -6x-3
Thảo luận nhóm 2 phút
?1 Cho hai đa thức :
M(x) = x4 + 5x3 - x2 + x - 0,5
N(x) = 3x4 - 5x2 - x - 2,5
Hãy tính: a) M(x) + N(x) và
b) M(x) - N(x)
a) M(x)= x4+5x3 -x2 + x - 0,5
+
N(x)=3x4 -5x2 -x -2,5
M(x)+N(x) =4x4+5x3 -6x2 - 3
Bài giải :
b) M(x)= x4+5x3 -x2 + x - 0,5
-
N(x)=3x4 -5x2 -x -2,5
M(x)-N(x) =-2x4+5x3+4x2 +2x +2
Tiết 60: CỘNG TRỪ ĐA THỨC MỘT BIẾN
1.Cộng hai đa thức một biến :
Cách 1: ( Thực hiện theo cách cộng đa thức bất kì )
Cách 2:
(Thực hiện theo cột dọc)
P(x)= 2x5+5x4 -x3+ x2 - x -1
Q(x)= -x4+x3 +5x+2
P(x)+Q(x)=2x5 +4x4 + x2 +4x+1
+
2. Trừ hai đa thức một biến :
Cách 1: ( Thực hiện theo cách trừ đa thức bất kì )
Cách 2:(Thực hiện theo cột dọc)
P(x)= 2x5 + 5x4 - x3 + x2 - x -1
_
Q(x)= - x4 + x3 +5x +2
P(x)-Q(x)= 2x5+6x4 -2x3 +x2 -6x -3
HƯỚNG DẪN VỀ NHÀ
Nắm vững cách cộng , trừ các đa thức một biến và chọn cách làm phù hợp cho từng bài
-Làm các bài tập : 44 ; 45; 46 ;48 ; 50 ;52 (SGK/ 45+46 )
- Chú ý : Khi lấy đa thức đối của một đa thức phải lấy đối tất cả các hạng tử của đa thức đó .
Hướng dẫn bài 45
a) Vì P(x) + Q(x) = x5 – 2x2 + 1 => Q(x) = (x5 – 2x2 + 1) – P(x)
b) Vì P(x) – R(x) = x3 => R(x) = P(x) – x3
Thay đa thức P(x) vào rồi thực hiện phép tính
CHÚC CÁC EM HỌC TỐT
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Trân Thị Minh Xương
Dung lượng: |
Lượt tài: 2
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)