Chương III. §5. Quy đồng mẫu nhiều phân số

Chia sẻ bởi Đỗ Hương Mơ | Ngày 24/10/2018 | 38

Chia sẻ tài liệu: Chương III. §5. Quy đồng mẫu nhiều phân số thuộc Số học 6

Nội dung tài liệu:

KIỂM TRA BÀI CŨ:
Mẫu của các phân số sau khi quy đồng có gì đặc biệt?
Câu 1: Quy đồng mẫu số hai phân số sau:
 
Làm thế nào để các phân số:
Cùng có chung một mẫu ?
Quy đồng mẫu số các phân số là biến đổi các phân số đã cho thành các phân số tương ứng bằng chúng nhưng có cùng một mẫu.
Tiết 74:
Quy đồng mẫu nhiều phân số
1. Quy đồng mẫu hai phân số
Ví dụ: Quy đồng mẫu hai phân số sau:

 
 

Mẫu chung
BCNN(5,8)
?1
Hãy điền số thích hợp vào ô vuông :
;
;
;
-48
-48
.16
.16
.16
?1
Hãy điền số thích hợp vào ô vuông :
;
;
;
-50
-48
-72
-75
-96
-100
-48
-50
-72
-75
-96
-100
Làm thế nào để các phân số:
cùng có chung một mẫu ?
2.Quy đồng mẫu nhiều phân số
?2(sgk)
a) Tìm BCNN của các số 2, 5, 3, 8.
b) Tìm các phân số lần lượt bằng:
nhưng có cùng mẫu là BCNN(2, 5, 3, 8).
a) BCNN(2, 5, 3, 8) =
= ............ = .........
23.3.5
120
b)
60
-72
80
-75
(60)
(24)
(40)
(15)
Muốn quy đồng mẫu nhiều phân số với mẫu số dương ta làm như sau:
Bước 1: Tìm một bội chung của các mẫu ( thường là BCNN) để làm mẫu chung.
Bước 2: Tìm thừa số phụ của mỗi mẫu ( bằng cách chia mẫu chung cho từng mẫu).
Bước 3: Nhân cả tử và mẫu của mỗi phân số với thừa số phụ tương ứng.
* Quy tắc: (SGK – Tr 18)
nhiều phân số
mẫu số dương
bội
chung
của
các
mẫu
BCNN
thừa
số
phụ
chia mẫu chung cho từng mẫu
Nhân
cả
tử

mẫu
thừa số phụ tương ứng
Tìm BCNN ( 12, 30)
12 = 22 . 3
30 = ………
BCNN ( 12, 30) = …………= ……..
Tìm thừa số phụ :
……: 12 = ……..
……. : 30 = ……..
- Nhân tử và mẫu của mỗi phân số với thừa số phụ tương ứng:
2.3.5
22.3.5
60
25
60
14
60
5
60
2
Điền vào chỗ trống để quy đồng mẫu các phân số: và
60
5
5
2
2
?3(a)
60
Tìm BCNN(12, 30):
12 = 22 . 3
30 = ………
BCNN(12, 30) = ………= …
Tìm thừa số phụ :
……: 12 = ……..
……. : 30 = ……..
Nhân tử và mẫu của mỗi phân số
với thừa số phụ tương ứng:
2.3.5
22.3.5
60
5
60
2
Quy đồng mẫu các phân số: và
60
5
5
2
2
?3(a)
HOẠT ĐỘNG NHÓM
Bài giải:
25
60
14
60
Quy đồng mẫu các phân số:

MC:
5
2
( )
Ta có:
( )
Quy đồng mẫu các phân số:
Bài 1
Bài giải:
Quy đồng mẫu các phân số:
MC:12
Ta có:
;
;
.
;
;
Lưu ý
* Trước khi quy đồng chúng ta nên:
+ Chuyển các phân số có mẫu âm thành các phân số bằng nó có mẫu dương.
+ Rút gọn các phân số đến tối giản.
* Nếu trong các mẫu có một mẫu chia hết cho các mẫu còn lại thì đó là mẫu chung.
Ví dụ:
* Nếu các mẫu là các số nguyên tố cùng nhau từng đôi một thì mẫu chung chính là tích của các mẫu đó.
Ví dụ:

 
 
MC: 6
MC: 3.5.7 = 105
Cho dãy các phân số sau:
Ư. , , ,... O. , , ,...


L. , , ,... A. , , ,...


C. , , ,... Đ. , , ,...


H. , , ,... Ô. , , ,...





- Quy đồng mẫu các phân số ở từng dãy.
- Dựa vào quy luật của dãy số đoán nhận phân số thứ tư của dãy.
-Viết phân số tìm được dưới dạng tối giản.
- Điền các chữ cái tương ứng với phân số đã cho ở bảng.
Ư
L
C
H
O
A
Đ
Ô
Ô
Cố đô Hoa Lư
Di tích
Đền Vua Đinh
Hướng dẫn về nhà
Học thuộc quy tắc quy đồng mẫu các phân số có mẫu dương..
- Làm 28, 29, 30 ,31 (SGK/19)
Bài tập bổ sung (SBT)
- Chuẩn bị phần BT, tiết sau ta học tiết “Luyện tập”.
Hướng dẫn bài 30 SGK :
b) Nên rút gọn rồi mới quy đồng.
c) Số 60 nhân 2 được 120, số này chia hết cho 30 và 40 nên nó chính là mẫu chung.
d) Không nên rút gọn mà nhận xét rằng 90 . 2 = 180 chia hết cho 60 và 18 nên 180 chính là mẫu chung.
a) Nhận xét 120 là bội của 40 nên lấy luôn 120 là mẫu chung.
24
146
12
73
=
-64
90
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Đỗ Hương Mơ
Dung lượng: | Lượt tài: 1
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)