Chương I. §18. Bội chung nhỏ nhất
Chia sẻ bởi Tòng Văn Toán |
Ngày 08/05/2019 |
100
Chia sẻ tài liệu: Chương I. §18. Bội chung nhỏ nhất thuộc Số học 6
Nội dung tài liệu:
CHÀO MỪNG QUÝ THẦY CÔ GIÁO
VỀ DỰ GIỜ LỚP : 6A
Môn: Toán 6
GV: Tòng Văn Toán
TRƯỜNG PTDTBT THCS NẬM TIN
Kiểm tra bài cũ
Viết các tập hợp sau
B(4); B(6); BC(4,6)
Bài làm
B(4)={0;4;8;12;16;20;24;…}
B(6)={0;6;12;18;24;30;…}
BC(4,6)={0;12;24;…}
Số 12 được gọi là gì của 4 và 6?
a) Ví dụ 1: Tìm tập hợp các bội chung của 4 và 6
B(4) = {0; 4; 8; 12; 16; 20; 24; 28; 32; 36; …}
B(6) = {0; 6; 12; 18; 24; 30; 36; …}
BC(4, 6) =
Ta nói 12 là bội chung nhỏ nhất của 4 và 6 Kí hiệu: BCNN(4, 6) =
Bội chung nhỏ nhất của hai hay nhiều số là số nhỏ nhất
khác 0 trong tập hợp các bội chung của các số đó.
b) Định nghĩa: Bội chung nhỏ nhất của hai hay nhiều số là số nhỏ nhất khác 0 trong tập hợp các bội chung của các số đó
Em hiểu thế nào là bội chung nhỏ nhất của hai hay nhiều số?
{0; 12; 24; 36; …}
12
Có nhận xét gì về mối quan hệ giữa BC(4, 6) và bội của BCNN (4, 6)?
Tất cả các bội chung của 4 và 6 đều là bội của BCNN(4, 6)
c) Nhận xét :Tất cả các bội chung của 4 và 6 đều là bội của BCNN(4, 6)
* Tìm BCNN(5, 1)
B(5) = {0; 5;10; 15; 20 ;25 ;…}
B(1) = {0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10 ;11;12;13;14;15;…}
BC(5, 1) = {0; 5; 10 ;15; …}
BCNN(5, 1) = 5
* Tìm BCNN(4, 6, 1)
B(1) = {0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; …}
BC(4, 6, 1) = {0; 12; 24,…}
BCNN(4, 6, 1) = 12
Ví Dụ 2: Tìm BCNN(5, 1) và BCNN(4, 6, 1)
B(4) = {0;4; 8; 12; 16; 20; 24; 28; 32; 36; …}
B(6) = {0; 6; 12; 18; 24; 30; 36; …}
BCNN(5, 1) = 5;
BCNN(4, 6, 1) = BCNN(4, 6)
Nhận xét gì về BCNN(5,1) với 5;
BCNN(4, 6, 1) với BCNN(4, 6)?
BCNN(a, 1) = ; BCNN(a, b, 1) =
a
BCNN(a, b)
a)Ví dụ 3:
BCNN (8, 12, 30) =
Muốn tìm BCNN của hai hay nhiều số lớn hơn 1, ta thực hiện ba bước sau:
Bước 1: Phân tích mỗi số ra thừa số nguyên tố.
Bước 2: Chọn ra các thừa số nguyên tố chung và riêng.
Phân tích mỗi số ra thừa số nguyên tố
Chọn ra các thừa số nguyên tố chung và riêng.
Tính tích các thừa số đã chọn, mỗi thừa số lấy số mũ lớn nhất của nó
Bước 3: Lập tích các thừa số đã chọn, mỗi thừa số lấy số mũ lớn nhất của nó. Tích đó là BCNN phải tìm.
Tìm BCNN (8, 12, 30)
b) Quy tắc: SGK/58
23 . 3 .5 = 120
30 = 2 .3 .5
12 = 22 .3
Hoạt động nhóm
2. Tìm BCNN(8,12)
4 = 22
6 = 2.3
BCNN(4, 6) = 22 .3 = 12
8 = 23
12 = 22 . 3
BCNN(8, 12) = 23 . 3 = 24
Tìm BCNN(4,6)
So sánh cách tìm ƯCLN và BCNN?
B1:Phân tích mỗi số ra thừa số nguyên tố.
B1: Phân tích mỗi số ra thừa số nguyên tố.
B2: Chọn ra các thừa số nguyên tố chung.
B2: Chọn ra các thừa số nguyên tố chung và riêng.
chung
chung và riêng
B3: Lập tích các thừa số đã chọn, mỗi thừa số lấy số mũ nhỏ nhất của nó.
B3: Lập tích các thừa số đã chọn, mỗi thừa số lấy số mũ lớn nhất của nó.
số mũ nhỏ nhất
số mũ lớn nhất
CÁCH TÌM ƯCLN
CÁCH TÌM BCNN
Bài tập 3: Bài toán liên hệ thực tế
Ba con tàu cập bến theo cách sau: Tàu I cứ 15 ngày cập bến một lần, tàu II cứ 20 ngày cập bến một lần, tàu III cứ 12 ngày cập bến một lần. Lần đầu cả ba cả 3 tàu cùng cập bến vào một ngày. Hỏi sau ít nhất bao nhiêu ngày cả ba tàu lại cùng cập bến?
Gợi ý:
Số ngày ít nhất để 3 tàu cùng cập bến lần thứ 2 là BCNN(15,20,12)
BCNN(15,20,12) = 22. 3 .5 = 60
Vậy sau ít nhất 60 ngày cả ba tàu cùng cập bến lần thứ hai
Ta có 15 = 3.5
20 = 22 .5
12 = 22 . 3
Hiểu và nắm vững quy tắc tìm BCNN của hai hay nhiều số.
- So sánh hai quy tắc tìm BCNN và tìm UCNN.
Làm bài tập 150; 151 (SGK/59).
HƯỚNG DẪN VỀ NHÀ
TIẾT HỌC ĐẾN ĐÂY LÀ KẾT THÚC
CÁM ƠN QUÝ THẦY CÔ VÀ CÁC EM
CHÚ Ý LẮNG NGHE !
VỀ DỰ GIỜ LỚP : 6A
Môn: Toán 6
GV: Tòng Văn Toán
TRƯỜNG PTDTBT THCS NẬM TIN
Kiểm tra bài cũ
Viết các tập hợp sau
B(4); B(6); BC(4,6)
Bài làm
B(4)={0;4;8;12;16;20;24;…}
B(6)={0;6;12;18;24;30;…}
BC(4,6)={0;12;24;…}
Số 12 được gọi là gì của 4 và 6?
a) Ví dụ 1: Tìm tập hợp các bội chung của 4 và 6
B(4) = {0; 4; 8; 12; 16; 20; 24; 28; 32; 36; …}
B(6) = {0; 6; 12; 18; 24; 30; 36; …}
BC(4, 6) =
Ta nói 12 là bội chung nhỏ nhất của 4 và 6 Kí hiệu: BCNN(4, 6) =
Bội chung nhỏ nhất của hai hay nhiều số là số nhỏ nhất
khác 0 trong tập hợp các bội chung của các số đó.
b) Định nghĩa: Bội chung nhỏ nhất của hai hay nhiều số là số nhỏ nhất khác 0 trong tập hợp các bội chung của các số đó
Em hiểu thế nào là bội chung nhỏ nhất của hai hay nhiều số?
{0; 12; 24; 36; …}
12
Có nhận xét gì về mối quan hệ giữa BC(4, 6) và bội của BCNN (4, 6)?
Tất cả các bội chung của 4 và 6 đều là bội của BCNN(4, 6)
c) Nhận xét :Tất cả các bội chung của 4 và 6 đều là bội của BCNN(4, 6)
* Tìm BCNN(5, 1)
B(5) = {0; 5;10; 15; 20 ;25 ;…}
B(1) = {0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10 ;11;12;13;14;15;…}
BC(5, 1) = {0; 5; 10 ;15; …}
BCNN(5, 1) = 5
* Tìm BCNN(4, 6, 1)
B(1) = {0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; …}
BC(4, 6, 1) = {0; 12; 24,…}
BCNN(4, 6, 1) = 12
Ví Dụ 2: Tìm BCNN(5, 1) và BCNN(4, 6, 1)
B(4) = {0;4; 8; 12; 16; 20; 24; 28; 32; 36; …}
B(6) = {0; 6; 12; 18; 24; 30; 36; …}
BCNN(5, 1) = 5;
BCNN(4, 6, 1) = BCNN(4, 6)
Nhận xét gì về BCNN(5,1) với 5;
BCNN(4, 6, 1) với BCNN(4, 6)?
BCNN(a, 1) = ; BCNN(a, b, 1) =
a
BCNN(a, b)
a)Ví dụ 3:
BCNN (8, 12, 30) =
Muốn tìm BCNN của hai hay nhiều số lớn hơn 1, ta thực hiện ba bước sau:
Bước 1: Phân tích mỗi số ra thừa số nguyên tố.
Bước 2: Chọn ra các thừa số nguyên tố chung và riêng.
Phân tích mỗi số ra thừa số nguyên tố
Chọn ra các thừa số nguyên tố chung và riêng.
Tính tích các thừa số đã chọn, mỗi thừa số lấy số mũ lớn nhất của nó
Bước 3: Lập tích các thừa số đã chọn, mỗi thừa số lấy số mũ lớn nhất của nó. Tích đó là BCNN phải tìm.
Tìm BCNN (8, 12, 30)
b) Quy tắc: SGK/58
23 . 3 .5 = 120
30 = 2 .3 .5
12 = 22 .3
Hoạt động nhóm
2. Tìm BCNN(8,12)
4 = 22
6 = 2.3
BCNN(4, 6) = 22 .3 = 12
8 = 23
12 = 22 . 3
BCNN(8, 12) = 23 . 3 = 24
Tìm BCNN(4,6)
So sánh cách tìm ƯCLN và BCNN?
B1:Phân tích mỗi số ra thừa số nguyên tố.
B1: Phân tích mỗi số ra thừa số nguyên tố.
B2: Chọn ra các thừa số nguyên tố chung.
B2: Chọn ra các thừa số nguyên tố chung và riêng.
chung
chung và riêng
B3: Lập tích các thừa số đã chọn, mỗi thừa số lấy số mũ nhỏ nhất của nó.
B3: Lập tích các thừa số đã chọn, mỗi thừa số lấy số mũ lớn nhất của nó.
số mũ nhỏ nhất
số mũ lớn nhất
CÁCH TÌM ƯCLN
CÁCH TÌM BCNN
Bài tập 3: Bài toán liên hệ thực tế
Ba con tàu cập bến theo cách sau: Tàu I cứ 15 ngày cập bến một lần, tàu II cứ 20 ngày cập bến một lần, tàu III cứ 12 ngày cập bến một lần. Lần đầu cả ba cả 3 tàu cùng cập bến vào một ngày. Hỏi sau ít nhất bao nhiêu ngày cả ba tàu lại cùng cập bến?
Gợi ý:
Số ngày ít nhất để 3 tàu cùng cập bến lần thứ 2 là BCNN(15,20,12)
BCNN(15,20,12) = 22. 3 .5 = 60
Vậy sau ít nhất 60 ngày cả ba tàu cùng cập bến lần thứ hai
Ta có 15 = 3.5
20 = 22 .5
12 = 22 . 3
Hiểu và nắm vững quy tắc tìm BCNN của hai hay nhiều số.
- So sánh hai quy tắc tìm BCNN và tìm UCNN.
Làm bài tập 150; 151 (SGK/59).
HƯỚNG DẪN VỀ NHÀ
TIẾT HỌC ĐẾN ĐÂY LÀ KẾT THÚC
CÁM ƠN QUÝ THẦY CÔ VÀ CÁC EM
CHÚ Ý LẮNG NGHE !
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Tòng Văn Toán
Dung lượng: |
Lượt tài: 0
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)