Chương I. §18. Bội chung nhỏ nhất

Chia sẻ bởi Tham Hong Linh | Ngày 25/04/2019 | 65

Chia sẻ tài liệu: Chương I. §18. Bội chung nhỏ nhất thuộc Số học 6

Nội dung tài liệu:

Chúc các em vui khỏe
Học tập tốt
Giáo viên: Thẩm Hồng Linh
Trường: THCS THị TRấn - Thường Tín
Kiểm tra bài cũ
Tìm B(4); B(6); BC(4; 6)
B(4) = {0; 4; 8; 12; 16; 20; 24; 28; 32; 36;………..}
B(6) = {0; 6; 12; 18; 24; 30; 36;……………….}
BC(4; 6) = {0; 12; 24; 36; ……….}
0
0
12
12
24
24
36
36
Giải
12
Số 12 là số nhỏ nhất khác 0 trong tập hợp các bội chung của 4 và 6.
TÊt c¶ c¸c béi chung ®Òu lµ
béi cña béi chung nhá nhÊt.
1/ Bội cung nhỏ nhất:













Tiết 34: Bội chung nhỏ nhất
Kết luận: Bội chung nhỏ nhất của 2
hay nhiều số là số nhỏ nhất khác 0 trong
tập hợp các bội chung của các số đó
Ví dụ: Tìm tập hợp các bội chung của 4 và 6
B(4)={0; 4; 8; 12; 16; 20; 24; 28; 32; 36;…}
B(6) = {0; 6; 12; 18; 24; 30; 36;…}
BC(4; 6) = {0; 12; 24; 36; …}
Số 12 là số nhỏ nhất khác 0 trong tập hợp các bội chung của 4 và 6. Ta nói 12 là bội chung nhỏ nhất của 4 và 6
BCNN (4, 6) = 12
* Béi chung nhá nhÊt cña 2 sè a, b kÝ hiÖu lµ BCNN(a, b)
Kết luận: (sGK - Tr57)
* Nhận xét:
* Chú ý: Víi mäi sè tù nªn a, b ta cã:
BCNN (a; 1) = a;
BCNN (a; b; 1) = BCNN (a; b)
Ví dụ:
BCNN (5, 1) = 5;
BCNN (4, 6, 1) = BCNN (4; 6) = 12
2/ Tìm BCNN bằng cách phân tích các số ra thừa số nguyên tố:
Ví dụ: Tìm BCNN (8, 18, 30)
BCNN (8, 18, 30) =
. .
= 360
Phân tích mỗi số ra thừa số nguyên tố
Chọn ra các thừa số nguyên tố chung và riêng
Tính tích các thừa số đã chọn, mỗi thừa số lấy số mũ lớn nhất của nó.
Bước 1: Phân tích mỗi số ra thừa số nguyên tố.
Bước 2: Chọn ra các thừa số nguyên tố chung và riêng.
Bước 3: Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ lớn nhất của nó, Tích đó là BCNN phải tỡm
Muốn tìm BCNN của hai hay nhiều số lớn hơn 1, ta thực hiện 3 bước sau:
Cách tìm BCNN: (SGK – Tr58)
TÊt c¶ c¸c béi chung ®Òu lµ
béi cña béi chung nhá nhÊt.
1/ Bội cung nhỏ nhất:













Tiết 34: Bội chung nhỏ nhất
Ví dụ: Tìm tập hợp các bội chung của 4 và 6
BCNN (4, 6) = 12
* Béi chung nhá nhÊt cña 2 sè a, b kÝ hiÖu lµ BCNN(a, b)
Kết luận: (sGK - Tr57)
* Nhận xét:
* Chú ý: Víi mäi sè tù nªn a, b ta cã:
BCNN (a; 1) = a;
BCNN (a; b; 1) = BCNN (a; b)
2/ Tìm BCNN bằng cách phân tích các số ra thừa số nguyên tố:
Ví dụ: Tìm BCNN (8, 18, 30)
36 = 22 . 32
84 = 22 . 3 . 7
168 = 23 . 3 . 7
A. B�n Lan :
BCNN(36, 84, 168) = 23 .32 = 72
B. B�n Nhung :
BCNN(36, 84, 168) = 22 .31 .7 = 84
C. B�n Hoa :
BCNN(36, 84, 168) = 23 .32 .7 = 504
Ai làm đúng
BC(4; 6) = {0; 12; 24; 36; …}
Cách tìm BCNN: (SGK – Tr58)
TÊt c¶ c¸c béi chung ®Òu lµ
béi cña béi chung nhá nhÊt.
1/ Bội cung nhỏ nhất:













Tiết 34: Bội chung nhỏ nhất
Ví dụ: Tìm tập hợp các bội chung của 4 và 6
BCNN (4, 6) = 12
* Béi chung nhá nhÊt cña 2 sè a, b kÝ hiÖu lµ BCNN(a, b)
Kết luận: (sGK - Tr57)
* Nhận xét:
* Chú ý: Víi mäi sè tù nªn a, b ta cã:
BCNN (a; 1) = a;
BCNN (a; b; 1) = BCNN (a; b)
2/ Tìm BCNN bằng cách phân tích các số ra thừa số nguyên tố:
Ví dụ: Tìm BCNN (8, 18, 30)
Tìm BCNN (8; 12)
BCNN(5; 7; 8)
BCNN(12; 16; 48)
= 24
= 280
= 48
* Chú ý:
a/ Nếu các số đã cho từng đôi một nguyên tố cùng nhau thi BCNN của chúng là tích của các số đó.
Ví dụ: BCNN(5, 7, 8) = 5.7.8 = 280
b/ Trong các số đã cho, nếu số lớn nhất là bội của các số còn lại thi BCNN của các số đã cho chính là số lớn nhất ấy.
Ví dụ: BCNN(12, 16, 48) = 48.
* Chú ý: (SGK – Tr 58)
BC(4; 6) = {0; 12; 24; 36; …}
Cách tìm BCNN: (SGK – Tr58)
* Chú ý: (SGK – Tr 58)
TÊt c¶ c¸c béi chung ®Òu lµ
béi cña béi chung nhá nhÊt.
1/ Bội cung nhỏ nhất:













Tiết 34: Bội chung nhỏ nhất
Ví dụ: Tìm tập hợp các bội chung của 4 và 6
BCNN (4, 6) = 12
* Béi chung nhá nhÊt cña 2 sè a, b kÝ hiÖu lµ BCNN(a, b)
* Nhận xét:
* Chú ý: Víi mäi sè tù nªn a, b ta cã:
BCNN (a; 1) = a;
BCNN (a; b; 1) = BCNN (a; b)
2/ Tìm BCNN bằng cách phân tích các số ra thừa số nguyên tố:
Ví dụ: Tìm BCNN (8, 18, 30)
Kết luận: (sGK - Tr57)
BC(4; 6) = {0; 12; 24; 36; …}
3/ Cách tìm bội chung thông qua tìm
BCNN:
Viết tập hợp A bằng cách liệt kê các phần tử.
Theo đề bài ta có:
x?BC(8; 18; 30) v� x < 1000.
GIảI
BC(8,18,30) =B(360) = {0;360;720;1080;…}
360.0
360.1
360.2
360.3
Vậy A = {0; 360; 720}
Kết luận: (sGK - Tr59)
Cách tìm BCNN: (SGK – Tr58)
lấy số mũ
lớn nhất của nó.
Lại khác nhau ở bước 3 chỗ nào?
Giống nhau
bước 1 rồi!
Khác nhau ở bước 2 chỗ nào nhỉ?
B.2: Chän ra c¸c thõa sè nguyªn tè chung vµ riªng.
* Chú ý: (SGK – Tr 58)
TÊt c¶ c¸c béi chung ®Òu lµ
béi cña béi chung nhá nhÊt.
1/ Bội cung nhỏ nhất:













Tiết 34: Bội chung nhỏ nhất
Ví dụ: Tìm tập hợp các bội chung của 4 và 6
BCNN (4, 6) = 12
* Béi chung nhá nhÊt cña 2 sè a, b kÝ hiÖu lµ BCNN(a, b)
* Nhận xét:
* Chú ý: Víi mäi sè tù nªn a, b ta cã:
BCNN (a; 1) = a;
BCNN (a; b; 1) = BCNN (a; b)
2/ Tìm BCNN bằng cách phân tích các số ra thừa số nguyên tố:
Ví dụ: Tìm BCNN (8, 18, 30)
Kết luận: (sGK - Tr57)
BC(4; 6) = {0; 12; 24; 36; …}
3/ Cách tìm bội chung thông qua tìm
BCNN:
Kết luận: (sGK - Tr59)
Cách tìm BCNN: (SGK – Tr58)
So sánh cách tìm ƯCLN và BCNN?
CÁCH TÌM ƯCLN
CÁCH TÌM BCLN
B.1: Phân tích mỗi số ra thừa số nguyên tố.
B.2: Chän ra c¸c thõa sè nguyªn tè chung
B.3: Lập tích các thừa số đã chọn, mỗi thừa số
B.1: Phân tích mỗi số ra thừa số nguyên tố.
B.3: Lập tích các thừa số đã chọn, mỗi thừa số
chung
chung và riêng.
lấy số mũ
nhỏ nhất của nó.
lấy số mũ
nhỏ nhất của nó.
lấy số mũ
lớn nhất của nó.
TÊt c¶ c¸c béi chung ®Òu lµ
béi cña béi chung nhá nhÊt.
1/ Bội cung nhỏ nhất:













Tiết 34: Bội chung nhỏ nhất
Ví dụ: Tìm tập hợp các bội chung của 4 và 6
BCNN (4, 6) = 12
* Béi chung nhá nhÊt cña 2 sè a, b kÝ hiÖu lµ BCNN(a, b)
* Nhận xét:
* Chú ý: Víi mäi sè tù nªn a, b ta cã:
BCNN (a; 1) = a;
BCNN (a; b; 1) = BCNN (a; b)
2/ Tìm BCNN bằng cách phân tích các số ra thừa số nguyên tố:
Ví dụ: Tìm BCNN (8, 18, 30)
Kết luận: (sGK - Tr57)
BC(4; 6) = {0; 12; 24; 36; …}
3/ Cách tìm bội chung thông qua tìm
BCNN:
Kết luận: (sGK - Tr59)
Cách tìm BCNN: (SGK – Tr58)
* Chú ý: (SGK – Tr 58)
Bài 1 : Tỡm BCNN của các số sau:
a) 45 và 52
b) 42, 70 và 180
c) 12, 60 và 360
Bài 2 : Tỡm x biết:
x 126 , x 198 và x nhỏ nhất(x ? 0)
Hướng dẫn về nhà
Chúc các thầy cô giáo
mạnh khoẻ - Hạnh phúc,
các em đạt kết quả cao
trong học tập

1/ Học:
- Học kỹ lý thuyết BCNN, cách tim BCNN, Tim ƯC thông qua tim BCNN.
- Thực hiện làm lại các bài tập và ví dụ đã học ở trên lớp.
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Tham Hong Linh
Dung lượng: | Lượt tài: 1
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)