Chương I. §18. Bội chung nhỏ nhất
Chia sẻ bởi Đinh Thị Huê |
Ngày 25/04/2019 |
55
Chia sẻ tài liệu: Chương I. §18. Bội chung nhỏ nhất thuộc Số học 6
Nội dung tài liệu:
Nhiệt liệt chào mừng quý thầy cô về dự giờ thao giảng lớp 6A
KIỂM TRA BÀI CŨ
Muốn tìm bội của một số ta làm thế nào?
Tìm B(4); B(6); BC(4; 6)
B(4) = {0; 4; 8; 12; 16; 20; 24; 28; 32; 36;………..}
B(6) = {0; 6; 12; 18; 24; 30; 36;……………….}
BC(4; 6) = {0; 12; 24; 36; ……….}
0
0
12
12
24
24
36
36
Giải:
12
Số 12 là số nhỏ nhất khác 0 trong tập hợp các bội chung của 4 và 6.
12 là bội chung nhỏ nhất của 4 và 6.
Tiết 34:
BỘI CHUNG NHỎ NHẤT
Tiết 34:
BỘI CHUNG NHỎ NHẤT
I/ Bội chung nhỏ nhất là gì?
Bội chung nhỏ nhất của 2 hay nhiều số là số nhỏ nhất khác 0
trong tập hợp các bội chung của các số đó
* Nhận xét:
Tất cả các bội chung đều là bội của bội chung nhỏ nhất.
* Bội chung nhỏ nhất của 2 số a và b kí hiệu là BCNN(a; b)
Ví dụ: BCNN (4; 6) = 12
* Chú ý: Với mọi số tự nhiên a; b ta có:
BCNN (a; 1) = a; BCNN (a; b; 1) = BCNN (a; b)
Ví dụ: BCNN (5; 1) = 5; BCNN (4; 6; 1) = BCNN (4; 6) = 12
Bài 18:
BỘI CHUNG NHỎ NHẤT
II/ Tìm BCNN bằng cách phân tích các số ra thừa số nguyên tố:
Ví dụ: Tìm BCNN (8; 18; 30)
BCNN (8; 18; 30) =
= 360
Muốn tìm BCNN của 2 hay nhiều số lớn hơn 1; ta thực hiện 3 bước sau:
Bước 1: Phân tích mỗi số ra thừa số nguyên tố.
Bước 2: Chọn ra các thừa số nguyên tố chung và riêng
Phân tích mỗi số ra thừa số nguyên tố
Chọn ra các thừa số nguyên tố chung và riêng.
Tính tích các thừa số đã chọn, mỗi thừa số lấy số mũ lớn nhất của nó
Bước 3: LËp tích của các thừa số đã chọn; mỗi thừa số lấy số mũ lớn nhất của nó. Tích đó là BCNN cần tìm.
Bài 18:
BỘI CHUNG NHỎ NHẤT
So sánh cách tìm ƯCLN và BCNN?
CÁCH TÌM ƯCLN
CÁCH TÌM BCLN
B.1:Phân tích mỗi số ra thừa số nguyên tố.
B.1: Phân tích mỗi số ra thừa số nguyên tố.
Giống nhau bước 1
B.2: Chọn ra các thừa số nguyên tố chung.
B.2: Chọn ra các thừa số nguyên tố chung và riêng.
Khác nhau bước 2 chỗ nào nhỉ?
chung.
chung và riêng
B.3: Lập tích các thừa số đã chọn, mỗi thừa số lấy số mũ nhỏ nhất của nó.
B.3: Lập tích các thừa số đã chọn, mỗi thừa số lấy số mũ lớn nhất của nó.
Lại khác nhau ở bước 3 chỗ nào?
số mũ nhỏ nhất
số mũ lớn nhất
BỘI CHUNG NHỎ NHẤT
Bài 18:
Tìm BCNN (8; 12); BCNN(5; 7; 8); BCNN(12; 16; 48)
* Chú ý:
1/ Nếu các số đã cho từng đôi một nguyên tố cùng nhau thì BCNN của chúng là tích của các số đó.
Ví dụ: 3 số 5; 7; 8 không có thừa số nguyên tố chung nên BCNN(5; 7; 8) = 5.7.8 = 280
2/ Trong các số đã cho, nếu số lớn nhất là bội của các số còn lại thì BCNN của chúng là số lớn nhất ấy.
Ví dụ: Xét 3 số 12; 16; 48, ta có 48 chia hết cho cả 12 và 16 nên BCNN(12; 16; 48) = 48.
24
280
48
Củng cố kiến thức
Bài tập 149: Tìm BCNN của
a) 60 và 280 b) 84 và 108 c) 13 và 15
Giải
HƯỚNG DẪN VỀ NHÀ
*Học thuộc quy tắc tìm BCNN của hai hay nhiều số lớn hơn 1,so sánh với quy tắc tìm ƯCLN
*¸p dông ®îc quy t¾c trªn vµo lµm bµi tËp
* Làm BT 150,151,152,153(SGK)
Giờ học đến đây là kết thúc
TRân trọng cám ơn quý thầy cô và các em học sinh
KIỂM TRA BÀI CŨ
Muốn tìm bội của một số ta làm thế nào?
Tìm B(4); B(6); BC(4; 6)
B(4) = {0; 4; 8; 12; 16; 20; 24; 28; 32; 36;………..}
B(6) = {0; 6; 12; 18; 24; 30; 36;……………….}
BC(4; 6) = {0; 12; 24; 36; ……….}
0
0
12
12
24
24
36
36
Giải:
12
Số 12 là số nhỏ nhất khác 0 trong tập hợp các bội chung của 4 và 6.
12 là bội chung nhỏ nhất của 4 và 6.
Tiết 34:
BỘI CHUNG NHỎ NHẤT
Tiết 34:
BỘI CHUNG NHỎ NHẤT
I/ Bội chung nhỏ nhất là gì?
Bội chung nhỏ nhất của 2 hay nhiều số là số nhỏ nhất khác 0
trong tập hợp các bội chung của các số đó
* Nhận xét:
Tất cả các bội chung đều là bội của bội chung nhỏ nhất.
* Bội chung nhỏ nhất của 2 số a và b kí hiệu là BCNN(a; b)
Ví dụ: BCNN (4; 6) = 12
* Chú ý: Với mọi số tự nhiên a; b ta có:
BCNN (a; 1) = a; BCNN (a; b; 1) = BCNN (a; b)
Ví dụ: BCNN (5; 1) = 5; BCNN (4; 6; 1) = BCNN (4; 6) = 12
Bài 18:
BỘI CHUNG NHỎ NHẤT
II/ Tìm BCNN bằng cách phân tích các số ra thừa số nguyên tố:
Ví dụ: Tìm BCNN (8; 18; 30)
BCNN (8; 18; 30) =
= 360
Muốn tìm BCNN của 2 hay nhiều số lớn hơn 1; ta thực hiện 3 bước sau:
Bước 1: Phân tích mỗi số ra thừa số nguyên tố.
Bước 2: Chọn ra các thừa số nguyên tố chung và riêng
Phân tích mỗi số ra thừa số nguyên tố
Chọn ra các thừa số nguyên tố chung và riêng.
Tính tích các thừa số đã chọn, mỗi thừa số lấy số mũ lớn nhất của nó
Bước 3: LËp tích của các thừa số đã chọn; mỗi thừa số lấy số mũ lớn nhất của nó. Tích đó là BCNN cần tìm.
Bài 18:
BỘI CHUNG NHỎ NHẤT
So sánh cách tìm ƯCLN và BCNN?
CÁCH TÌM ƯCLN
CÁCH TÌM BCLN
B.1:Phân tích mỗi số ra thừa số nguyên tố.
B.1: Phân tích mỗi số ra thừa số nguyên tố.
Giống nhau bước 1
B.2: Chọn ra các thừa số nguyên tố chung.
B.2: Chọn ra các thừa số nguyên tố chung và riêng.
Khác nhau bước 2 chỗ nào nhỉ?
chung.
chung và riêng
B.3: Lập tích các thừa số đã chọn, mỗi thừa số lấy số mũ nhỏ nhất của nó.
B.3: Lập tích các thừa số đã chọn, mỗi thừa số lấy số mũ lớn nhất của nó.
Lại khác nhau ở bước 3 chỗ nào?
số mũ nhỏ nhất
số mũ lớn nhất
BỘI CHUNG NHỎ NHẤT
Bài 18:
Tìm BCNN (8; 12); BCNN(5; 7; 8); BCNN(12; 16; 48)
* Chú ý:
1/ Nếu các số đã cho từng đôi một nguyên tố cùng nhau thì BCNN của chúng là tích của các số đó.
Ví dụ: 3 số 5; 7; 8 không có thừa số nguyên tố chung nên BCNN(5; 7; 8) = 5.7.8 = 280
2/ Trong các số đã cho, nếu số lớn nhất là bội của các số còn lại thì BCNN của chúng là số lớn nhất ấy.
Ví dụ: Xét 3 số 12; 16; 48, ta có 48 chia hết cho cả 12 và 16 nên BCNN(12; 16; 48) = 48.
24
280
48
Củng cố kiến thức
Bài tập 149: Tìm BCNN của
a) 60 và 280 b) 84 và 108 c) 13 và 15
Giải
HƯỚNG DẪN VỀ NHÀ
*Học thuộc quy tắc tìm BCNN của hai hay nhiều số lớn hơn 1,so sánh với quy tắc tìm ƯCLN
*¸p dông ®îc quy t¾c trªn vµo lµm bµi tËp
* Làm BT 150,151,152,153(SGK)
Giờ học đến đây là kết thúc
TRân trọng cám ơn quý thầy cô và các em học sinh
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Đinh Thị Huê
Dung lượng: |
Lượt tài: 1
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)