CÁC CON SỐ LÍ THÚ.doc
Chia sẻ bởi Phạm Huy Hoạt |
Ngày 12/10/2018 |
55
Chia sẻ tài liệu: CÁC CON SỐ LÍ THÚ.doc thuộc Số học 6
Nội dung tài liệu:
CÁC CON SỐ LÍ THÚ
Phát minh ra những con số là một trong những thành tựu to lớn của nhân loại. Những con số xuất hiện ở tất cả các lĩnh vực, từ nghiên cứu khoa học đến kinh tế, tài chính…
Tài liệu này xin đưa ra cho người đoc một góc nhìn mới về những con số, góc nhìn giải trí…Dẫu thế, khi đọc, mong bạn đừng cố hiểu, nếu bạn không thực sự tò mò, bởi chúng...khá hại não.
1. Cặp số thân thiết
Hai số tạo thành một cặp số thân thiết khi chúng tuân theo quy luật: Số này bằng tổng tất cả các ước của số kia (trừ chính số đó) và ngược lại. Cặp số thân thiện đầu tiên được tim ra, và cũng được chứng minh là cặp "số thân thiết" nhỏ nhất, là cặp số: 220 và 284. Hãy thử phân tích một chút: Số 220 ngoài bản thân nó ra, nó còn có 11 ước số là 1, 2, 4, 5, 10, 11, 20, 44, 55 và 110. Tổng của 11 ước số này vừa đúng bằng 284. Ngược lại, số 284 ngoài bản thân nó, nó còn 5 ước số khác là: 1, 2, 4, 71, 142, tổng của chúng cũng vừa đúng bằng 220.
Thế kỷ 17, nhà toán học Pháp Fecma tìm ra cặp "số thân thiết" thứ hai là: 17296 và 18416. Cũng thời điểm ấy, một nhà toán học Pháp khác tìm ra cặp số thứ ba là: 9363544 và 9437056. Điều khiến người ta kinh ngạc nhất là nhà toán học Thuỵ Sỹ nổi tiếng Ơ-le vào năm 1750 đã công bố một lúc 60 cặp số thân thiết. Giới toán học được một phen kinh hoàng, họ cho rằng " Ơ-le đã tìm ra hết cả rồi". Nhưng không ngờ, một thế kỷ sau, một thanh niên nước Ý mới 16 tuổi tên là Baconi đã công bố một cặp số thân thiết vào năm 1866, nó chỉ lớn hơn 220 và 284 một chút, đó là cặp số 1184 và 1210. Những nhà toán học lớn trước đó đã tìm ra chúng, để cho cặp số chẳng mấy lớn này dễ dàng qua mặt.
Cùng với sự phát triển của khoa học kỹ thuật, các nhà toán học bằng máy tính đã kiểm tra tất cả các số trong phạm vi 1.000.000, tổng cộng tìm được 42 cặp số thân thiết. Hiện nay, số lượng cặp số thân thiết được tìm thấy đã vượt quá con số 1000. Thế nhưng liệu có phải số thân thiết là nhiều vô hạn? Chúng phân bố có quy luật không? Những vấn đề này tới nay vẫn còn bỏ ngỏ.
Với thời đại công nghệ hiện nay, chỉ bằng một thuật toán C++ không quá phức tạp, bạn có thể tìm được rất rất nhiều các cặp số thân thiết.
2. Cặp số hứa hôn
Không chỉ dừng lại ở mức thân thiết, tiến thêm một bước nữa, các nhà khoa học bắt đầu định nghĩa “số hứa hôn”.
Cặp số hứa hôn là hai số nguyên dương sao cho: tổng các ước của số này (không tính số đó) nhiều hơn số kia đúng 1 đơn vị.
Nói cách khác, (m, n) là một cặp số đã đính hôn nếu s(m)=n+1 và s(n)=m+1, trong đó s(n) là tổng phần nổi của n: một điều kiện tương đương là đó σ(m)=σ(n)=m+n+1, trong đó σ biểu thị chức năng tổng các ước.
Những cặp số hứa hôn đầu tiên đã được tìm ra: (48,75),(140,195),(1050,1925),(1575,1648),(2024,2295),(5775,6128
Người ta chứng minh được rằng, cặp số hứa hôn luôn gồm 1 số chẳn và 1 số lẻ ( có lẽ là tượng trưng cho 1 nam và 1 nữ).
3. Số Emirp
Nếu bạn đang cố tra từ trên trong tiếng anh thì chắc sẽ không tìm thấy đâu. Bởi nó là từ viết ngược của từ “Prime”.
Một emirp là một số nguyên tố mà khi đảo ngược vị trí các chữ số của nó, ta cũng được một số nguyên tố. Định nghĩa này không bao gồm các số nguyên tố xuôi ngược (như 151 hoặc 787), cũng không phải số nguyên tố 1 chữ số như 7.
Những emirps đầu tiên được tìm ra là:
13, 17, 31, 37, 71, 73, 79, 97, 107, 113, 149, 157...
Tính đến tháng 11 năm 2009, các emirp lớn nhất được biết đến là 1.010.006941.992.101×104.9991, được tìm thấy bởi Jens Kruse Andersen trong tháng 10 năm 2007.
4. Số hoàn hảo
Trong lý thuyết số, một số nguyên dương
Phát minh ra những con số là một trong những thành tựu to lớn của nhân loại. Những con số xuất hiện ở tất cả các lĩnh vực, từ nghiên cứu khoa học đến kinh tế, tài chính…
Tài liệu này xin đưa ra cho người đoc một góc nhìn mới về những con số, góc nhìn giải trí…Dẫu thế, khi đọc, mong bạn đừng cố hiểu, nếu bạn không thực sự tò mò, bởi chúng...khá hại não.
1. Cặp số thân thiết
Hai số tạo thành một cặp số thân thiết khi chúng tuân theo quy luật: Số này bằng tổng tất cả các ước của số kia (trừ chính số đó) và ngược lại. Cặp số thân thiện đầu tiên được tim ra, và cũng được chứng minh là cặp "số thân thiết" nhỏ nhất, là cặp số: 220 và 284. Hãy thử phân tích một chút: Số 220 ngoài bản thân nó ra, nó còn có 11 ước số là 1, 2, 4, 5, 10, 11, 20, 44, 55 và 110. Tổng của 11 ước số này vừa đúng bằng 284. Ngược lại, số 284 ngoài bản thân nó, nó còn 5 ước số khác là: 1, 2, 4, 71, 142, tổng của chúng cũng vừa đúng bằng 220.
Thế kỷ 17, nhà toán học Pháp Fecma tìm ra cặp "số thân thiết" thứ hai là: 17296 và 18416. Cũng thời điểm ấy, một nhà toán học Pháp khác tìm ra cặp số thứ ba là: 9363544 và 9437056. Điều khiến người ta kinh ngạc nhất là nhà toán học Thuỵ Sỹ nổi tiếng Ơ-le vào năm 1750 đã công bố một lúc 60 cặp số thân thiết. Giới toán học được một phen kinh hoàng, họ cho rằng " Ơ-le đã tìm ra hết cả rồi". Nhưng không ngờ, một thế kỷ sau, một thanh niên nước Ý mới 16 tuổi tên là Baconi đã công bố một cặp số thân thiết vào năm 1866, nó chỉ lớn hơn 220 và 284 một chút, đó là cặp số 1184 và 1210. Những nhà toán học lớn trước đó đã tìm ra chúng, để cho cặp số chẳng mấy lớn này dễ dàng qua mặt.
Cùng với sự phát triển của khoa học kỹ thuật, các nhà toán học bằng máy tính đã kiểm tra tất cả các số trong phạm vi 1.000.000, tổng cộng tìm được 42 cặp số thân thiết. Hiện nay, số lượng cặp số thân thiết được tìm thấy đã vượt quá con số 1000. Thế nhưng liệu có phải số thân thiết là nhiều vô hạn? Chúng phân bố có quy luật không? Những vấn đề này tới nay vẫn còn bỏ ngỏ.
Với thời đại công nghệ hiện nay, chỉ bằng một thuật toán C++ không quá phức tạp, bạn có thể tìm được rất rất nhiều các cặp số thân thiết.
2. Cặp số hứa hôn
Không chỉ dừng lại ở mức thân thiết, tiến thêm một bước nữa, các nhà khoa học bắt đầu định nghĩa “số hứa hôn”.
Cặp số hứa hôn là hai số nguyên dương sao cho: tổng các ước của số này (không tính số đó) nhiều hơn số kia đúng 1 đơn vị.
Nói cách khác, (m, n) là một cặp số đã đính hôn nếu s(m)=n+1 và s(n)=m+1, trong đó s(n) là tổng phần nổi của n: một điều kiện tương đương là đó σ(m)=σ(n)=m+n+1, trong đó σ biểu thị chức năng tổng các ước.
Những cặp số hứa hôn đầu tiên đã được tìm ra: (48,75),(140,195),(1050,1925),(1575,1648),(2024,2295),(5775,6128
Người ta chứng minh được rằng, cặp số hứa hôn luôn gồm 1 số chẳn và 1 số lẻ ( có lẽ là tượng trưng cho 1 nam và 1 nữ).
3. Số Emirp
Nếu bạn đang cố tra từ trên trong tiếng anh thì chắc sẽ không tìm thấy đâu. Bởi nó là từ viết ngược của từ “Prime”.
Một emirp là một số nguyên tố mà khi đảo ngược vị trí các chữ số của nó, ta cũng được một số nguyên tố. Định nghĩa này không bao gồm các số nguyên tố xuôi ngược (như 151 hoặc 787), cũng không phải số nguyên tố 1 chữ số như 7.
Những emirps đầu tiên được tìm ra là:
13, 17, 31, 37, 71, 73, 79, 97, 107, 113, 149, 157...
Tính đến tháng 11 năm 2009, các emirp lớn nhất được biết đến là 1.010.006941.992.101×104.9991, được tìm thấy bởi Jens Kruse Andersen trong tháng 10 năm 2007.
4. Số hoàn hảo
Trong lý thuyết số, một số nguyên dương
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Phạm Huy Hoạt
Dung lượng: 511,95KB|
Lượt tài: 0
Loại file: rar
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)