Các bài Luyện tập
Chia sẻ bởi Nguyễn Hiếu Hạnh |
Ngày 24/10/2018 |
45
Chia sẻ tài liệu: Các bài Luyện tập thuộc Số học 6
Nội dung tài liệu:
Bài 1. Trong các câu sau câu nào đúng, câu nào sai? Lấy ví dụ minh họa.
a. Có 2 số tự nhiên liên tiếp đều là số nguyên tố.
b. Có 3 số lẻ liên tiếp đều là số nguyên tố.
c. Mọi số nguyên tố đều là số lẻ.
d. Mọi số nguyên tố đều có chữ số tận cùng là một trong các chữ số: 1, 3. 7,9.
e. Tích 2 số nguyên tố là một số nguyên tố.
f. Tổng 2 số nguyên tố là một số nguyên tố.
h. Tổng 2 số nguyên tố là một hợp số.
a. Đúng. (VD: 2;3).
b. Đúng. ( VD: 3;5;7).
c. Sai. ( VD: số 2)
d. Sai. ( VD: số 5)
e. Sai.(VD: 2 . 3 = 6
là hợp số)
f. Sai. ( VD: 7 + 3 = 10
là hợp số)
Đề bài
Lời giải
h. Sai. ( VD: 2+ 3 = 5
là số nguyên tố)
Bài 2. Thay số vào dấu * để số
a. là một hợp số
b. là số nguyên tố
b) Một số tự nhiên lớn hơn 1 không phải hợp số thì đó là số nguyên tố.
Vì thế, từ (a) => Để số là số nguyên tố thì:
{3;9}
Vì là số có 1 chữ số
{0;1;2;3;4;5;6;7;8;9}
Nếu {0;2;4;6;8} thì 2 và lớn hơn 1 nên là hợp số.
Nếu {1;7} thì 3 và lớn hơn 1 nên là hợp số.
Nếu = 5 thì 55 5 và 55 > 1 nên là hợp số.
Vậy, để là một hợp số thì :
{0;1;2;4;5;6;7;8}
Lời giải
Bài 3. Tổng (hiệu) sau là số nguyên tố hay hợp số?
5 . 6 . 7 + 8 . 9
5 . 7. 9 . 11 – 2 .3 . 7
2 . (5 . 3 . 7 + 4 . 9) 2
=> Tổng này là hợp số vì ngoài ước 1 và chính nó, nó còn có ước là 2.
7. ( 5 . 9 . 11 – 2 . 3) 7
=> Tổng này là hợp số vì ngoài ước là 1 và chính nó, nó còn có ước là 7.
5 . 7 . 11 + 13 . 17 . 19
4253 + 1422
Có 2 số hạng đều là lẻ
=> tổng chẵn 2 => tổng là hợp số.
Tổng có tận cùng là 5
=> tổng 5 => tổng là hợp số.
Lời giải
Lời giải
4
Bài 4 ( SGK-T48) Điền vào bảng sau mọi số nguyên tố (p) mà bình phương của nó không vượt quá (a).
Tức là p2 ≤ a
Cách kiểm tra một số nguyên tố:
29 là số nguyên tố vì nó không chia hết cho 2; 3; 5
69 là số nguyên tố vì nó không chia hết cho 2; 3; 5; 7
127 là số nguyên tố vì nó không chia hết cho 2; 3; 5; 7; 11
173 là số nguyên tố vì nó không chia hết cho 2; 3; 5; 7; 11; 13
Kết luận: a là số nguyên tố (a>1) nếu a không chia hết cho mọi số nguyên tố
mà bình phương của nó không vượt quá a
KIẾN THỨC CẦN NHỚ
1. Các dấu hiệu chia hết cho 2, 3 ,5 ,6 ,9
2. Khái niệm về số nguyên tố, cách kiểm tra một số là số nguyên tố
3. Khái niệm về hợp số
BÀI TẬP VỀ NHÀ
1. Xem kỹ các bài tập đã chữa
2. Làm các bài tập:
* 124 (SGK-T48)
* 154 ,155, 156, 157,158 (SBT- T21).
3. Đọc trước bài: Phân tích một số ra thừa số nguyên tố.
a. Có 2 số tự nhiên liên tiếp đều là số nguyên tố.
b. Có 3 số lẻ liên tiếp đều là số nguyên tố.
c. Mọi số nguyên tố đều là số lẻ.
d. Mọi số nguyên tố đều có chữ số tận cùng là một trong các chữ số: 1, 3. 7,9.
e. Tích 2 số nguyên tố là một số nguyên tố.
f. Tổng 2 số nguyên tố là một số nguyên tố.
h. Tổng 2 số nguyên tố là một hợp số.
a. Đúng. (VD: 2;3).
b. Đúng. ( VD: 3;5;7).
c. Sai. ( VD: số 2)
d. Sai. ( VD: số 5)
e. Sai.(VD: 2 . 3 = 6
là hợp số)
f. Sai. ( VD: 7 + 3 = 10
là hợp số)
Đề bài
Lời giải
h. Sai. ( VD: 2+ 3 = 5
là số nguyên tố)
Bài 2. Thay số vào dấu * để số
a. là một hợp số
b. là số nguyên tố
b) Một số tự nhiên lớn hơn 1 không phải hợp số thì đó là số nguyên tố.
Vì thế, từ (a) => Để số là số nguyên tố thì:
{3;9}
Vì là số có 1 chữ số
{0;1;2;3;4;5;6;7;8;9}
Nếu {0;2;4;6;8} thì 2 và lớn hơn 1 nên là hợp số.
Nếu {1;7} thì 3 và lớn hơn 1 nên là hợp số.
Nếu = 5 thì 55 5 và 55 > 1 nên là hợp số.
Vậy, để là một hợp số thì :
{0;1;2;4;5;6;7;8}
Lời giải
Bài 3. Tổng (hiệu) sau là số nguyên tố hay hợp số?
5 . 6 . 7 + 8 . 9
5 . 7. 9 . 11 – 2 .3 . 7
2 . (5 . 3 . 7 + 4 . 9) 2
=> Tổng này là hợp số vì ngoài ước 1 và chính nó, nó còn có ước là 2.
7. ( 5 . 9 . 11 – 2 . 3) 7
=> Tổng này là hợp số vì ngoài ước là 1 và chính nó, nó còn có ước là 7.
5 . 7 . 11 + 13 . 17 . 19
4253 + 1422
Có 2 số hạng đều là lẻ
=> tổng chẵn 2 => tổng là hợp số.
Tổng có tận cùng là 5
=> tổng 5 => tổng là hợp số.
Lời giải
Lời giải
4
Bài 4 ( SGK-T48) Điền vào bảng sau mọi số nguyên tố (p) mà bình phương của nó không vượt quá (a).
Tức là p2 ≤ a
Cách kiểm tra một số nguyên tố:
29 là số nguyên tố vì nó không chia hết cho 2; 3; 5
69 là số nguyên tố vì nó không chia hết cho 2; 3; 5; 7
127 là số nguyên tố vì nó không chia hết cho 2; 3; 5; 7; 11
173 là số nguyên tố vì nó không chia hết cho 2; 3; 5; 7; 11; 13
Kết luận: a là số nguyên tố (a>1) nếu a không chia hết cho mọi số nguyên tố
mà bình phương của nó không vượt quá a
KIẾN THỨC CẦN NHỚ
1. Các dấu hiệu chia hết cho 2, 3 ,5 ,6 ,9
2. Khái niệm về số nguyên tố, cách kiểm tra một số là số nguyên tố
3. Khái niệm về hợp số
BÀI TẬP VỀ NHÀ
1. Xem kỹ các bài tập đã chữa
2. Làm các bài tập:
* 124 (SGK-T48)
* 154 ,155, 156, 157,158 (SBT- T21).
3. Đọc trước bài: Phân tích một số ra thừa số nguyên tố.
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Nguyễn Hiếu Hạnh
Dung lượng: |
Lượt tài: 1
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)