Bai tap chuong 4 so 7
Chia sẻ bởi Nguyễn Tá Định |
Ngày 12/10/2018 |
44
Chia sẻ tài liệu: bai tap chuong 4 so 7 thuộc Đại số 7
Nội dung tài liệu:
ÔN TẬP
Dạng 1: Thu gọn biểu thức đại số:
Thu gọn đơn thức, tìm bậc, hệ số.
Bài tập áp dụng : Thu gọn đơn thức, tìm bậc, hệ số.
A= ; B=
Bài 2: Cộng và trừ hai đơn thức đồng dạng
a) 3x2y3 + x2y3 ; b) 5x2y - x2y c) xyz2 + xyz2 - xyz2
Bài 3: 1. Nhân các đơn thức sau và tìm bậc và hệ số của đơn thức nhận được.
a) . b) . c) . (-xy)2
2. Thu gọn các đơn thức sau rồi tìm hệ số của nó:
a/ .(3x2 yz2) b/ -54 y2 . bx ( b là hằng số) c/ - 2x2 y. x(y2z)3
Thu gọn đa thưc, tìm bậc, hệ số cao nhất.
Phương pháp:
Bước 1: nhóm các hạng tử đồng dạng, tính cộng, trừ các hạng tử đòng dạng.
Bước 2: xác định hệ số cao nhất, bậc của đa thức đã thu gọn.
Bài tập áp dụng : Thu gọn đa thưc, tìm bậc, hệ số cao nhất.
Dạng 2: Tính giá trị biểu thức đại số :
Phương pháp :
Bước 1: Thu gọn các biểu thức đại số.
Bước 2: Thay giá trị cho trước của biến vào biểu thức đại số.
Bước 3: Tính giá trị biểu thức số.
Bài tập áp dụng :
Bài 1 : Tính giá trị biểu thức
a. A = 3x3 y + 6x2y2 + 3xy3 tại b. B = x2 y2 + xy + x3 + y3 tại x = –1; y = 3
Bài 2 : Cho đa thức P(x) = x4 + 2x2 + 1; Q(x) = x4 + 4x3 + 2x2 – 4x + 1;
Tính : P(–1); P(); Q(–2); Q(1);
Dạng 3 : Cộng, trừ đa thức nhiều biến
Bài 1 : Cho đa thức : A = 4x2 – 5xy + 3y2; B = 3x2 + 2xy - y2
Tính A + B; A – B
Bài 2 : Tìm đa thức M, N biết :
M + (5x2 – 2xy) = 6x2 + 9xy – y2 (3xy – 4y2)- N= x2 – 7xy + 8y2
Dạng 4: Cộng trừ đa thức một biến:
Phương pháp:
Bước 1: thu gọn các đơn thức và sắp xếp theo lũy thừa giảm dần của biến.
Bước 2: viết các đa thức sao cho các hạng tử đồng dạng thẳng cột với nhau.
Bước 3: thực hiện phép tính cộng hoặc trừ các hạng tử đồng dạng cùng cột.
Chú ý: A(x) - B(x)=A(x) +[-B(x)]
Cho đa thức : A(x) = 3x4 – 3/4x3 + 2x2 – 3
B(x) = 8x4 + 1/5x3 – 9x + 2/5
Tính : A(x) + B(x); A(x) - B(x); B(x) - A(x);
Dạng 5 : Tìm nghiệm của đa thức 1 biến
1. Kiểm tra 1 số cho trước có là nghiệm của đa thức một biến không
Phương pháp:Bước 1: Tính giá trị của đa thức tại giá trị của biến cho trước đó.
Bước 2: Nếu giá trị của đa thức bằng 0 thì giá trị của biến đó là nghiệm của đa thức.
2. Tìm nghiệm của đa thức một biến
Bài tập áp dụng :
Bài 1 : Cho đa thức f(x) = x4 + 2x3 – 2x2 – 6x + 5
Trong các số sau : 1; –1; 2; –2 số nào là nghiệm của đa thức f(x)
Bài 2 : Tìm nghiệm của các đa thức sau.
f(x) = 3x – 6; h(x) = –5x + 30 g(x)=(x-3)(16-4x)
k(x) = x2-81 m(x) = x2 +7x -8 n(x)= 5x2+9x+4
Dạng 6 : Tìm hệ số chưa biết trong đa thức P(x) biết P(x0) = a
Phương pháp:
Bước 1: Thay giá trị x = x0 vào đa thức.
Bước 2: Cho biểu thức số đó bằng a.
Bước 3: Tính được hệ số chưa biết.
Bài tập áp dụng:
Bài 1: Cho đa thức P(x) = mx – 3. Xác định m biết rằng P(–1) = 2
Dạng 1: Thu gọn biểu thức đại số:
Thu gọn đơn thức, tìm bậc, hệ số.
Bài tập áp dụng : Thu gọn đơn thức, tìm bậc, hệ số.
A= ; B=
Bài 2: Cộng và trừ hai đơn thức đồng dạng
a) 3x2y3 + x2y3 ; b) 5x2y - x2y c) xyz2 + xyz2 - xyz2
Bài 3: 1. Nhân các đơn thức sau và tìm bậc và hệ số của đơn thức nhận được.
a) . b) . c) . (-xy)2
2. Thu gọn các đơn thức sau rồi tìm hệ số của nó:
a/ .(3x2 yz2) b/ -54 y2 . bx ( b là hằng số) c/ - 2x2 y. x(y2z)3
Thu gọn đa thưc, tìm bậc, hệ số cao nhất.
Phương pháp:
Bước 1: nhóm các hạng tử đồng dạng, tính cộng, trừ các hạng tử đòng dạng.
Bước 2: xác định hệ số cao nhất, bậc của đa thức đã thu gọn.
Bài tập áp dụng : Thu gọn đa thưc, tìm bậc, hệ số cao nhất.
Dạng 2: Tính giá trị biểu thức đại số :
Phương pháp :
Bước 1: Thu gọn các biểu thức đại số.
Bước 2: Thay giá trị cho trước của biến vào biểu thức đại số.
Bước 3: Tính giá trị biểu thức số.
Bài tập áp dụng :
Bài 1 : Tính giá trị biểu thức
a. A = 3x3 y + 6x2y2 + 3xy3 tại b. B = x2 y2 + xy + x3 + y3 tại x = –1; y = 3
Bài 2 : Cho đa thức P(x) = x4 + 2x2 + 1; Q(x) = x4 + 4x3 + 2x2 – 4x + 1;
Tính : P(–1); P(); Q(–2); Q(1);
Dạng 3 : Cộng, trừ đa thức nhiều biến
Bài 1 : Cho đa thức : A = 4x2 – 5xy + 3y2; B = 3x2 + 2xy - y2
Tính A + B; A – B
Bài 2 : Tìm đa thức M, N biết :
M + (5x2 – 2xy) = 6x2 + 9xy – y2 (3xy – 4y2)- N= x2 – 7xy + 8y2
Dạng 4: Cộng trừ đa thức một biến:
Phương pháp:
Bước 1: thu gọn các đơn thức và sắp xếp theo lũy thừa giảm dần của biến.
Bước 2: viết các đa thức sao cho các hạng tử đồng dạng thẳng cột với nhau.
Bước 3: thực hiện phép tính cộng hoặc trừ các hạng tử đồng dạng cùng cột.
Chú ý: A(x) - B(x)=A(x) +[-B(x)]
Cho đa thức : A(x) = 3x4 – 3/4x3 + 2x2 – 3
B(x) = 8x4 + 1/5x3 – 9x + 2/5
Tính : A(x) + B(x); A(x) - B(x); B(x) - A(x);
Dạng 5 : Tìm nghiệm của đa thức 1 biến
1. Kiểm tra 1 số cho trước có là nghiệm của đa thức một biến không
Phương pháp:Bước 1: Tính giá trị của đa thức tại giá trị của biến cho trước đó.
Bước 2: Nếu giá trị của đa thức bằng 0 thì giá trị của biến đó là nghiệm của đa thức.
2. Tìm nghiệm của đa thức một biến
Bài tập áp dụng :
Bài 1 : Cho đa thức f(x) = x4 + 2x3 – 2x2 – 6x + 5
Trong các số sau : 1; –1; 2; –2 số nào là nghiệm của đa thức f(x)
Bài 2 : Tìm nghiệm của các đa thức sau.
f(x) = 3x – 6; h(x) = –5x + 30 g(x)=(x-3)(16-4x)
k(x) = x2-81 m(x) = x2 +7x -8 n(x)= 5x2+9x+4
Dạng 6 : Tìm hệ số chưa biết trong đa thức P(x) biết P(x0) = a
Phương pháp:
Bước 1: Thay giá trị x = x0 vào đa thức.
Bước 2: Cho biểu thức số đó bằng a.
Bước 3: Tính được hệ số chưa biết.
Bài tập áp dụng:
Bài 1: Cho đa thức P(x) = mx – 3. Xác định m biết rằng P(–1) = 2
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Nguyễn Tá Định
Dung lượng: 301,00KB|
Lượt tài: 3
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)