Xử Lý Ảnh Chương 7

Chia sẻ bởi Thái Thanh Tùng | Ngày 14/10/2018 | 23

Chia sẻ tài liệu: Xử Lý Ảnh Chương 7 thuộc Tư liệu tham khảo

Nội dung tài liệu:



7


nhận dạng ảnh
Pattern recognition


Như chỉ ra trong hình 1.1-a chương Một, nhận dạng ảnh là giai đoạn cuối cùng của các hệ thống xử lý ảnh. Nhận dạng ảnh dựa trên nền tảng lý thuyết nhận dạng (pattern recognition) nói chung và đã được đề cập trong nhiều sách về nhận dạng. ở đây, ta không nhắc lại mà chỉ trình bày mang tính chất giới thiệu một số khái niệm cơ bản và các phương pháp thường được sử dụng trong kỹ thuật nhận dạng. Và cuối cùng sẽ đề cập đến một trường hợp cụ thể về nhận dạng đó là nhận dạng chữ viết, một vấn đề đã và đang được quan tâm nhiều.
Trong lý thuyết nhận dạng nói chung và nhận dạng ảnh nói riêng có 3 cách tiếp cận khác nhau:
- Nhận dạng dựa vào phân hoạch không gian.
- Nhận dạng cấu trúc.
- Nhận dạng dựa vào kỹ thuật mạng nơ ron.
Hai cách tiếp cận đầu là các kỹ thuật kinh điển. Các đối tượng ảnh quan sát và thu nhận được phải trải qua giai đoạn tiền xử lý nhằm tăng cường chất lượng, làm nổi các chi tiết (chương 4), tiếp theo là trích chọn và biểu diễn các đặc trưng (chương 5 và chương 6), và cuối cùng mới qua giai đoạn nhận dạng. Cách tiếp cận thứ ba hoàn toàn khác. Nó dựa vào cơ chế đoán nhận, lưu trũ và phân biệt đối tượng mô phỏng theo hoạt động của hệ thần kinh con người. Do cơ chế đặc biệt, các đối tượng thu nhận bởi thị giác người không cần qua giai đoạn cải thiện mà chuyển ngay sang giai đoạn tổng hợp, đối sánh với các mẫu đã lưu trữ để nhận dạng. Đây là cách tiếp cận có nhiều hứa hẹn. Các cách tiếp cận trên sẽ trình bày chi tiết trong các phần dưới đây.

7.1 tổng quan về nhận dạng

Nhận dạng là quá trình phân loại các đối tượng được biểu diễn theo một mô hình nào đó và gán cho chúng vào một lớp (gán cho đối tượng một tên gọi) dựa theo những quy luật và các mẫu chuẩn. Quá trình nhận dạng dựa vào những mẫu học biết trước gọi là nhận dạng có thày hay học có thày (supervised learning); trong trường hợp ngược lại gọi là học không có thày (non supervised learning). Chúng ta sẽ lần lượt giới thiệu các khái niệm này.
7.1.1 Không gian biểu diễn đối tượng, không gian diễn dịch
Không gian biểu diễn đối tượng
Các đối tượng khi quan sát hay thu thập được, thường được biểu diễn bởi tập các đặc trưng hay đặc tính. Như trong trường hợp xử lý ảnh, ảnh sau khi được tăng cường để nâng cao chất lượng, phân vùng và trích chọn đặc tính như đã trình bày trong các chương từ chương Bốn đến chương Sáu, được biểu diễn bởi các đặc trưng như biên, miền đồng nhất, v...,v. Người ta thường phân các đặc trưng này theo các loại như: đặc trưng tô pô, đặc trưng hình học và đặc trưng chức năng. Việc biểu diễn ảnh theo đặc trưng nào là phụ thuộc vào ứng dụng tiếp theo.
ở đây ta đưa ra một cách hình thức việc biểu diễn các đối tượng. Giả sử đối tượng X (ảnh, chữ viết, dấu vân tay, v...,v) được biểu diễn bởi n thành phần (n đặc trưng): X = {x1, x2,..., xn}; mỗi xi biểu diễn một đặc tính. Không gian biểu diễn đối tượng thường gọi tắt là không gian đối tượng X được định nghĩa:
X = {X1, X2,..., Xm}
trong đó mỗi Xi biểu diễn một đối tượng. Không gian này có thể là vô hạn. Để tiện xem xét chúng ta chỉ xét tập X là hữu hạn.
Không gian diễn dịch
Không gian diễn dịch là tập các tên gọi của đối tượng. Kết thúc quá trình nhận dạng ta xác định được
tên gọi cho các đối tượng trong tập không gian đối tượng hay nói là đã nhận dạng được đối tượng Một cách hình thức gọi ( là tập tên đối tượng:
( = {w1, w2,...,wk} với wi, i = 1, 2,..., k là tên các đối tượng
Quá trình nhận dạng đối tượng f là một ánh xạ f: X ---> ( với f là tập các quy luật để
định một phần tử trong X ứng với một phần tử trong (. Nếu tập các quy luật và tập tên các đối tượng là biết trước như trong nhận dạng chữ viết (có 26 lớp từ A đến Z), người ta gọi là nhận dạng có thày. Trường hợp thứ hai là nhận dạng không có thày. Đương nhiên trong trường hợp này việc nhận dạng có khó khăn hơn.
7.1.2 Mô hình và bản chất của quá trình nhận dạng
7.1.2.1 Mô hình
Việc chọn lựa một quá trình nhận dạng có liên quan mật thiết đến kiểu mô tả mà người ta sử dụng để đặc tả đối tượng. Trong nhận dạng, người ta phân chia làm 2 họ lớn:
- Họ mô tả theo tham số
- Họ mô tả theo cấu trúc.
Cách mô tả được lựa chọn sẽ xác định mô hình của đối tượng. Như vậy, chúng ta sẽ có 2 loại mô hình: mô hình theo tham số và mô hình cấu trúc.
Mô hình tham số sử dụng một véctơ để đặc tả đối tượng. Mỗi phần tử của véctơ mô tả một đặc tính của đối tượng. Thí dụ như trong các đặc trưng chức năng, người ta sử dụng các hàm cơ sở trực giao để biểu diễn. Và như vậy ảnh sẽ được biểu diễn bởi một chuỗi các hàm trực giao. Giả sử C là đường bao của ảnh và C(i,j) là điểm thứ i trên đường bao, i = 1, 2,..., N (đường bao gồm N điểm).
Giả sử tiếp :
x0 = xi
y0 = yi
là toạ độ tâm điểm. Như vậy, moment trung tâm bậc p, q của đường bao là:
(pq =(xi-x0)p(yi-y0)q (7.1)
Véctơ tham số trong trường hợp này chính là các moment (ij với i=1, 2,...,p và j=1, 2,...,q. Còn trong số các đặc trưng hình học, người ta hay sử dụng chu tuyến , đường bao, diện tích và tỉ lệ T = 4(S/p2, với S là
diện tích, p là chu tuyến.
Việc lựa chọn phương pháp biểu diễn sẽ làm đơn giản cách xây dựng. Tuy nhiên, việc lựa chọn đặc trưng nào là hoàn toàn phụ thuộc vào ứng dụng. Thí dụ , trong nhận dạng chữ (sẽ trình bày sau), các tham số là các dấu hiệu:
- số điểm chạc ba, chạc tư,
- số điểm chu trình,
- số điểm ngoặt,
- số điểm kết thúc,
(
chẳng hạn với chữ t ( ( có 4 điểm kết thúc, 1 điểm chạc tư,...
(

Mô hình cấu trúc: Cách tiếp cận của mô hình này dựa vào việc mô tả đối tượng nhờ một số khái niệm biểu thị các đối tượng cơ sở trong ngôn ngữ tự nhiên. Để mô tả đối tượng, người ta dùng một số dạng nguyên thuỷ như đoạn thẳng, cung, v,...,v. Chẳng hạn một hình chữ nhật được định nghĩa gồm 4 đoạn thẳng vuông góc với nhau từng đôi một. Trong mô hình này người ta sử dụng một bộ kí hiệu kết thúc Vt, một bộ kí hiệu không kết thúc gọi là Vn. Ngoài ra có dùng một tập các luật sản xuất để mô tả cách xây dựng các đối tượng phù hợp dựa trên các đối tượng đơn giản hơn hoặc đối tượng nguyên thuỷ (tập Vt). Trong cách tiếp cận này, ta chấp nhận một khẳng đinh là: cấu trúc một dạng là kết quả của việc áp dụng luật sản xuất theo theo những nguyên tắc xác định bắt đầu từ một dạng gốc bắt đầu. Một cách hình thức, ta có thể coi mô hình này tương đương một văn phạm G = (Vt, Vn, P, S) với:
- Vt là bộ ký hiệu kết thúc,
- Vn là bộ ký hiệu không kết thúc,
- P là luật sản xuất,
- S là dạng (ký hiệu bắt đầu).
Thí dụ, đối tượng nhà gồm mái và tường, mái là một tam giác gồm 3 cạnh là 3 đoạn thẳng, tường là một hình chữ nhật gồm 4 cạnh vuông góc với nhau từng đôi một sẽ được mô tả thông qua cấu trúc mô tả dựa vào văn phạm sinh như chỉ ra trong hình 7.1 dưới đây.




(1) (2) Nhà
(3)
Mái Tường


(6) (4)
Đọạn 1 Đoạn 2 Đoạn 3 Đoạn 3 Đoạn 4 Đoạn 5 Đoạn 6

(5)
Hình 7.1 Mô hình cấu trúc của một đối tượng nhà.

7.1.2.2 Bản chất của quá trình nhận dạng
Quá trình nhận dạng gồm 3 giai đoạn chính:
- Lựa chọn mô hình biểu diễn đối tượng.
- Lựa chọn luật ra quyết định (phương pháp nhận dạng) và suy diễn quá trình học.
- Học nhận dạng.
Khi mô hình biểu diễn đối tượng đã được xác định, có thể là định lượng (mô hình tham số) hay định tính (mô hình cấu trúc), quá trình nhận dạng chuyển sang giai đoạn học. Học là giai đoạn rất quan trọng. Thao tác học nhằm cải thiện, điều chỉnh việc phân hoạch tập đối tượng thành các lớp.
Việc nhận dạng chính là tìm ra quy luật và các thuật toán để có thể gán đối tượng vào một lớp hay nói một cách khác gán cho đối tượng một tên.
Học có thày (supervised learning)
Kỹ thuật phân loại nhờ kiến thức biết trước gọi là học có thày. Đặc điểm cơ bản của kỹ thuật này là người ta có một thư viện các mẫu chuẩn. Mẫu cần nhận dạng sẽ được đem sánh với mẫu chuẩn để xem nó thuộc loại nào. Thí dụ như trong một ảnh viễn thám, người ta muốn phân biệt một cánh đồng lúa, một cánh rừng hay một vùng đất hoang mà đã có các miêu tả về các đối tượng đó. Vấn đề chủ yếu là thiết kế một hệ thống để có thể đối sánh đối tượng trong ảnh với mẫu chuẩn
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Thái Thanh Tùng
Dung lượng: 789,00KB| Lượt tài: 0
Loại file: DOC
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)