Toan8
Chia sẻ bởi Kim Anh Tuan |
Ngày 13/10/2018 |
61
Chia sẻ tài liệu: toan8 thuộc Đại số 8
Nội dung tài liệu:
BàI TậP LớN CHUYÊN Đề BấT ĐẳNG THứC
Nhóm 8: kim anh tuấn
Lê xuân tân
đỗ đức kiên
Nguyễn bá kha
BàI TậP LớN CHUYÊN Đề BấT ĐẳNG THứC bao gồm các phần kiến thức đã được trình bày như sau:
i : Các kiến thức cần lưu ý
iI : Một số phương pháp chứng minh bất đẳng thức
iii : ứng dụng của bất đẳng thức
i : Các kiến thức cần lưu ý
1, Định nghĩa bất đẳng thức
+ a nhỏ hơn b , kí hiệu a < b
+ a lớn hơn b , kí hiệu a > b ,
+ a nhỏ hơn hoặc bằng b , kí hiệu a < b,
+ a lớn hơn hoặc bằng b , kí hiệu a > b ,
2, Một số tính chất cơ bản của bất dẳng thức :
a, Tính chất 1: a > b <=> b < a
b, Tính chất 2: a > b và b > c => a > c
c, Tính chất 3: a > b <=> a + c > b + c
Hệ quả : a > b <=> a - c > b - c
a + c > b <=> a > b - c
d, Tính chất 4 : a > b và c > d => a + c > b + d
a > b và c < d => a - c > b - d
e, Tính chất 5 : a > b và c > 0 => ac > bd
a > b và c < 0 => ac < bd
f, Tính chất 6 : a > b > 0 ; c > d > 0 => ac > bd
g, Tính chất 7 : a > b > 0 => an > bn
a > b <=> an > bn với n lẻ .
h, Tính chất 8 : a > b ; ab > 0 => a > b > 0 hoặc 0 > a > b
3, Một số bất đẳng thức thông dụng :
a, Bất đẳng thức Côsi :
Với 2 số dương a , b ta có :
Dấu đẳng thức xảy ra khi : a = b
b, Bất đẳng thức Bunhiacôpxki :
Với mọi số a ; b; x ; y ta có : ( ax + by )2 (a2 + b2)(x2 + y2)
Dấu đẳng thức xảy ra <=>
c, Bất đẳng thức giá trị tuyệt đối :
Dấu đẳng thức xảy ra khi : ab 0
II : Một số phương pháp chứng minh bất đẳng thức
1.Phương pháp 1 : Dùng định nghĩa
- Kiến thức : Để chứng minh A > B , ta xét hiệu A - B rồi chứng minh A - B > 0 .
- Lưu ý : A2 0 với mọi A ; dấu `` = `` xảy ra khi A = 0 .
- Ví dụ :
Bài 1.1 :
Với mọi số : x, y, z chứng minh rằng : x2 + y2 + z2 +3 2(x + y + z)
Giải :
Ta xét hiệu : H = x2 + y2 + z2 +3 - 2( x + y + z)
= x2 + y2 + z2 +3 - 2x - 2y - 2z
= (x2 - 2x + 1) + (y2 - 2y + 1) + (z2 - 2z + 1)
= (x - 1)2 + (y - 1)2 + (z - 1)2
Do (x - 1)2 0 với mọi x
(y - 1)2 0 với mọi y
(z - 1)2 0 với mọi z
=> H 0 với mọi x, y, z
Hay x2 + y2 + z2 +3 2(x + y + z) với mọi x, y, z .
Dấu bằng xảy ra <=> x = y = z = 1.
Bài 1.2 :
Cho a, b, c, d, e là các số thực :
Chứng minh rằng : a2 + b2 + c2 + d2 + e2 a(b
Nhóm 8: kim anh tuấn
Lê xuân tân
đỗ đức kiên
Nguyễn bá kha
BàI TậP LớN CHUYÊN Đề BấT ĐẳNG THứC bao gồm các phần kiến thức đã được trình bày như sau:
i : Các kiến thức cần lưu ý
iI : Một số phương pháp chứng minh bất đẳng thức
iii : ứng dụng của bất đẳng thức
i : Các kiến thức cần lưu ý
1, Định nghĩa bất đẳng thức
+ a nhỏ hơn b , kí hiệu a < b
+ a lớn hơn b , kí hiệu a > b ,
+ a nhỏ hơn hoặc bằng b , kí hiệu a < b,
+ a lớn hơn hoặc bằng b , kí hiệu a > b ,
2, Một số tính chất cơ bản của bất dẳng thức :
a, Tính chất 1: a > b <=> b < a
b, Tính chất 2: a > b và b > c => a > c
c, Tính chất 3: a > b <=> a + c > b + c
Hệ quả : a > b <=> a - c > b - c
a + c > b <=> a > b - c
d, Tính chất 4 : a > b và c > d => a + c > b + d
a > b và c < d => a - c > b - d
e, Tính chất 5 : a > b và c > 0 => ac > bd
a > b và c < 0 => ac < bd
f, Tính chất 6 : a > b > 0 ; c > d > 0 => ac > bd
g, Tính chất 7 : a > b > 0 => an > bn
a > b <=> an > bn với n lẻ .
h, Tính chất 8 : a > b ; ab > 0 => a > b > 0 hoặc 0 > a > b
3, Một số bất đẳng thức thông dụng :
a, Bất đẳng thức Côsi :
Với 2 số dương a , b ta có :
Dấu đẳng thức xảy ra khi : a = b
b, Bất đẳng thức Bunhiacôpxki :
Với mọi số a ; b; x ; y ta có : ( ax + by )2 (a2 + b2)(x2 + y2)
Dấu đẳng thức xảy ra <=>
c, Bất đẳng thức giá trị tuyệt đối :
Dấu đẳng thức xảy ra khi : ab 0
II : Một số phương pháp chứng minh bất đẳng thức
1.Phương pháp 1 : Dùng định nghĩa
- Kiến thức : Để chứng minh A > B , ta xét hiệu A - B rồi chứng minh A - B > 0 .
- Lưu ý : A2 0 với mọi A ; dấu `` = `` xảy ra khi A = 0 .
- Ví dụ :
Bài 1.1 :
Với mọi số : x, y, z chứng minh rằng : x2 + y2 + z2 +3 2(x + y + z)
Giải :
Ta xét hiệu : H = x2 + y2 + z2 +3 - 2( x + y + z)
= x2 + y2 + z2 +3 - 2x - 2y - 2z
= (x2 - 2x + 1) + (y2 - 2y + 1) + (z2 - 2z + 1)
= (x - 1)2 + (y - 1)2 + (z - 1)2
Do (x - 1)2 0 với mọi x
(y - 1)2 0 với mọi y
(z - 1)2 0 với mọi z
=> H 0 với mọi x, y, z
Hay x2 + y2 + z2 +3 2(x + y + z) với mọi x, y, z .
Dấu bằng xảy ra <=> x = y = z = 1.
Bài 1.2 :
Cho a, b, c, d, e là các số thực :
Chứng minh rằng : a2 + b2 + c2 + d2 + e2 a(b
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Kim Anh Tuan
Dung lượng: 771,50KB|
Lượt tài: 3
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)