Toan 8
Chia sẻ bởi Nguyễn Hoàng Quân |
Ngày 12/10/2018 |
55
Chia sẻ tài liệu: toan 8 thuộc Đại số 8
Nội dung tài liệu:
Bài 1)Cho biểu thức: K= x4 - 2011.x3 - 2011.x2 – 2011.x – 2012
Tính giá trị của biểu thức K khi x = 2012
Bài làm
Vì x = 2012 nên ta có K = x4 - 2011.x3 - 2011.x2 – 2011.x – 2012
= x4 - (x-1).x3 - (x-1).x2 – (x-1).x – x
= x4 - x4 + x3 - x3+ x2 - x2 + x- x
= 0
2.Cho tam giác nhọn ABC ( AC< BC). Trên BC lấy điểm D sao cho CD = CA. Kẻ CH vuông góc với AD tại H. Gọi E là trung điểm của CD và F là điểm đối xứng của H qua E.
a. Các tứ giác CHDF; AHFC là hình gì? Tại sao?
b. tính diện tích của CHDF khi CH = 4cm và diện tích tam giác ACD = 24 cm2
c. Tam giác ABC có thêm điều kiện gì để CHDF là hình vuông.
Bài làm
+ Vẽ hình: như bên
Các tứ giác CHDF;
AHFC là hình gì? Tại sao?
Chứng minh:
- Xét tứ giác CHDF ta có: CE = ED (vì E là trung điểm CD)
HE = EF (vì H, F đối xứng qua E)
Do đó tứ giác CHDF là hình bình hành (1)
Mặt khác CH AD nên góc CHD = 900 (2)
Từ (1), (2) suy ra tứ giác CHDF là hình chữ nhật.
- Vì CHDF là hình chữ nhật nên CF // HD, CF = HD
=> CF //AH (3) (vì A, H, D thẳng hàng)
và CF = AH (4) (vì tg CAD cân có CH AD nên CH là đường cao cũng là đường trung tuyến do đó HD = AH).
Từ (3), (4) suy ra tứ giác AHFC là hình bình hành.
b. tính diện tích của CHDF khi CH = 4cm và diện tích tam giác ACD = 24 cm2
Vì SACD = 1/2.CH.AD = 1/2.4.AD = 24 => AD = 24:2 = 12 (cm) do đó HD =AD/2 = 12/2 = 6 cm. Vậy SCHDF = 6.4 = 24 cm2.
c. Tam giác ABC có thêm điều kiện gì để CHDF là hình vuông.
Để CHDF là hình vuông ( CD HF ( góc HEC = 900 ( góc ACB = 900 ( tg ABC vuông tại C (vì góc HEC = góc ACB do đồng vị)
Tính giá trị của biểu thức K khi x = 2012
Bài làm
Vì x = 2012 nên ta có K = x4 - 2011.x3 - 2011.x2 – 2011.x – 2012
= x4 - (x-1).x3 - (x-1).x2 – (x-1).x – x
= x4 - x4 + x3 - x3+ x2 - x2 + x- x
= 0
2.Cho tam giác nhọn ABC ( AC< BC). Trên BC lấy điểm D sao cho CD = CA. Kẻ CH vuông góc với AD tại H. Gọi E là trung điểm của CD và F là điểm đối xứng của H qua E.
a. Các tứ giác CHDF; AHFC là hình gì? Tại sao?
b. tính diện tích của CHDF khi CH = 4cm và diện tích tam giác ACD = 24 cm2
c. Tam giác ABC có thêm điều kiện gì để CHDF là hình vuông.
Bài làm
+ Vẽ hình: như bên
Các tứ giác CHDF;
AHFC là hình gì? Tại sao?
Chứng minh:
- Xét tứ giác CHDF ta có: CE = ED (vì E là trung điểm CD)
HE = EF (vì H, F đối xứng qua E)
Do đó tứ giác CHDF là hình bình hành (1)
Mặt khác CH AD nên góc CHD = 900 (2)
Từ (1), (2) suy ra tứ giác CHDF là hình chữ nhật.
- Vì CHDF là hình chữ nhật nên CF // HD, CF = HD
=> CF //AH (3) (vì A, H, D thẳng hàng)
và CF = AH (4) (vì tg CAD cân có CH AD nên CH là đường cao cũng là đường trung tuyến do đó HD = AH).
Từ (3), (4) suy ra tứ giác AHFC là hình bình hành.
b. tính diện tích của CHDF khi CH = 4cm và diện tích tam giác ACD = 24 cm2
Vì SACD = 1/2.CH.AD = 1/2.4.AD = 24 => AD = 24:2 = 12 (cm) do đó HD =AD/2 = 12/2 = 6 cm. Vậy SCHDF = 6.4 = 24 cm2.
c. Tam giác ABC có thêm điều kiện gì để CHDF là hình vuông.
Để CHDF là hình vuông ( CD HF ( góc HEC = 900 ( góc ACB = 900 ( tg ABC vuông tại C (vì góc HEC = góc ACB do đồng vị)
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Nguyễn Hoàng Quân
Dung lượng: 27,00KB|
Lượt tài: 3
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)