Tiết 58. Luyện Tập.Hình 7
Chia sẻ bởi Nguyễn Duy Tuấn |
Ngày 22/10/2018 |
26
Chia sẻ tài liệu: Tiết 58. Luyện Tập.Hình 7 thuộc Hình học 7
Nội dung tài liệu:
CHÀO MỪNG
THẦY CÔ GIÁO VỀ DỰ GIỜ THĂM LỚP
.
Bài 38a (tr.73.SGK)
Cho hình 38.
a, Tính góc KOL
Hình 38
Bài 38 (tr.73.SGK)
b, Theo giả thiết O là giao của các đường phân giác của IKL nên IO là tia phân giác của
Do đó:
c, Vì O là giao của ba đường phân giác của IKL nên O cách đều ba cạnh của IKL .
a, Áp dụng định lý tổng ba góc vào OKL ta có:
Vì KO và LO là các đường phân giác của IKL (gt) nên:
Tiếp tục áp dụng định lý tổng ba góc vào IKL ta có:
Từ (1), (2), (3) ta có:
O cách đều ba cạnh của IKL
Chưa thể kết luận O cách đều ba cạnh của IKL
IKO và ILO có bằng nhau không? Vì sao?
Bài 40 (tr.73.SGK)
Cho tam giác ABC cân tại A. Gọi G là trọng tâm, I là điểm nằm trong tam giác và cách đều ba cạnh của tam giác đó. Chứng minh ba điểm A, G, I thẳng hàng.
Từ giả thiết tam giác ABC cân tại A ta suy ra được điều gỡ?
G là trọng tâm nghĩa là gì? Vẽ điểm G như thế nào?
G là trọng tâm nghĩa là G là giao của ba đường trung tuyến. Muốn vẽ G ta xác định giao của hai đường trung tuyến của tam giác đó.
Với giả thiết đã cho về điểm I ta vẽ I như thế nào?
I nằm trong và cách đều ba cạnh của tam giác nên I là giao của ba đường phân giác của tam giác. Muốn vẽ I ta xác định giao của hai đường phân giác của tam giác đó.
G
I
Bài 40 (tr. 73.SGK)
Bằng những phân tích như trên để chứng minh A, G, I thẳng hàng ta làm như thế nào?
Để chứng minh A, G, I thẳng hàng ta chứng minh A, G, I cùng thuộc AD.
Chứng minh: Theo giả thiết ABC cân tại A nên đường phân giác AD cũng là đường trung tuyến.
G là trọng tâm của ABC (gt) G thuộc AD ( AD là trung tuyến) (1)
I nằm trong và cách đều ba cạnh của ABC (gt) nên I là giao của ba đường phân giác I thuộc AD ( AD là phân giác) (2)
Từ (1) và (2) suy ra A, G, I thẳng hàng.
Nhận xét: Trong tam giác cân trọng tâm và điểm nằm trong và
cách đều ba cạnh của tam giác cùng thuộc một đường thẳng.
Chứng minh định lí: Nếu tam giác có một đường trung tuyến đồng thời là đường phân giác thì tam giác đó là tam giác cân.
Bài 42 ( tr.73.SGK)
Để chứng minh ABC cân tại A ta có thể làm như thế nào?
Để chứng minh ABC cân tại A ta có thể:
chứng minh AB = AC
hoặc chứng minh
ABC cân tại A
AB = AC
ABM = DCM
AB = CD và AC = CD
CAD cân tại C
ABM = DCM
ABC cân tại A
MHB = MKC
MB = MC (gt) và MH = MK
M thuộc tia phân giác của (gt)
Định lí: Nếu tam giác có một đường trung tuyến đồng thời là đường phân giác thì tam giác đó là tam giác cân.
Bài 43 (tr.73.SGK)
Đố: Có hai con đường cắt nhau và cùng cắt một con sông tại hai địa điểm khác nhau.
Hãy tìm một địa điểm để xây dựng một đài quan sát sao cho các khoảng cách từ đó đến hai con đường và đến bờ sông bằng nhau.
.
.
Bài tập về nhà:
Học thuộc các định lí trong bài.
Làm bài tập 39, 41 SGK-trang 73.
Bài 47, 48 SBT trang 29.
Đọc trước bài: Tính chất đường trung trực của một đoạn thẳng, chuẩn bị giấy để làm thực hành.
Trên tia đối của tia MA lấy điểm D
sao cho MA = MD
Xét ABM và DCM có:
MB = MC ( AM là trung tuyến-gt)
( đối đỉnh)
MA = MD ( cách vẽ điểm D)
Do đó ABM = DCM (c.g.c)
AB = CD ( hai cạnh tương ứng) (1)
và ( hai góc tương ứng)
Mà ( AM là phân giác-gt)
Nên ( cùng bằng )
CAD cân tại C ( có hai góc bằng nhau)
CA = CD ( hai cạnh bên) (2)
Từ (1) và (2) ta có AB = AC ( cùng bằng CD)
Vậy ABC cân tại A.
THẦY CÔ GIÁO VỀ DỰ GIỜ THĂM LỚP
.
Bài 38a (tr.73.SGK)
Cho hình 38.
a, Tính góc KOL
Hình 38
Bài 38 (tr.73.SGK)
b, Theo giả thiết O là giao của các đường phân giác của IKL nên IO là tia phân giác của
Do đó:
c, Vì O là giao của ba đường phân giác của IKL nên O cách đều ba cạnh của IKL .
a, Áp dụng định lý tổng ba góc vào OKL ta có:
Vì KO và LO là các đường phân giác của IKL (gt) nên:
Tiếp tục áp dụng định lý tổng ba góc vào IKL ta có:
Từ (1), (2), (3) ta có:
O cách đều ba cạnh của IKL
Chưa thể kết luận O cách đều ba cạnh của IKL
IKO và ILO có bằng nhau không? Vì sao?
Bài 40 (tr.73.SGK)
Cho tam giác ABC cân tại A. Gọi G là trọng tâm, I là điểm nằm trong tam giác và cách đều ba cạnh của tam giác đó. Chứng minh ba điểm A, G, I thẳng hàng.
Từ giả thiết tam giác ABC cân tại A ta suy ra được điều gỡ?
G là trọng tâm nghĩa là gì? Vẽ điểm G như thế nào?
G là trọng tâm nghĩa là G là giao của ba đường trung tuyến. Muốn vẽ G ta xác định giao của hai đường trung tuyến của tam giác đó.
Với giả thiết đã cho về điểm I ta vẽ I như thế nào?
I nằm trong và cách đều ba cạnh của tam giác nên I là giao của ba đường phân giác của tam giác. Muốn vẽ I ta xác định giao của hai đường phân giác của tam giác đó.
G
I
Bài 40 (tr. 73.SGK)
Bằng những phân tích như trên để chứng minh A, G, I thẳng hàng ta làm như thế nào?
Để chứng minh A, G, I thẳng hàng ta chứng minh A, G, I cùng thuộc AD.
Chứng minh: Theo giả thiết ABC cân tại A nên đường phân giác AD cũng là đường trung tuyến.
G là trọng tâm của ABC (gt) G thuộc AD ( AD là trung tuyến) (1)
I nằm trong và cách đều ba cạnh của ABC (gt) nên I là giao của ba đường phân giác I thuộc AD ( AD là phân giác) (2)
Từ (1) và (2) suy ra A, G, I thẳng hàng.
Nhận xét: Trong tam giác cân trọng tâm và điểm nằm trong và
cách đều ba cạnh của tam giác cùng thuộc một đường thẳng.
Chứng minh định lí: Nếu tam giác có một đường trung tuyến đồng thời là đường phân giác thì tam giác đó là tam giác cân.
Bài 42 ( tr.73.SGK)
Để chứng minh ABC cân tại A ta có thể làm như thế nào?
Để chứng minh ABC cân tại A ta có thể:
chứng minh AB = AC
hoặc chứng minh
ABC cân tại A
AB = AC
ABM = DCM
AB = CD và AC = CD
CAD cân tại C
ABM = DCM
ABC cân tại A
MHB = MKC
MB = MC (gt) và MH = MK
M thuộc tia phân giác của (gt)
Định lí: Nếu tam giác có một đường trung tuyến đồng thời là đường phân giác thì tam giác đó là tam giác cân.
Bài 43 (tr.73.SGK)
Đố: Có hai con đường cắt nhau và cùng cắt một con sông tại hai địa điểm khác nhau.
Hãy tìm một địa điểm để xây dựng một đài quan sát sao cho các khoảng cách từ đó đến hai con đường và đến bờ sông bằng nhau.
.
.
Bài tập về nhà:
Học thuộc các định lí trong bài.
Làm bài tập 39, 41 SGK-trang 73.
Bài 47, 48 SBT trang 29.
Đọc trước bài: Tính chất đường trung trực của một đoạn thẳng, chuẩn bị giấy để làm thực hành.
Trên tia đối của tia MA lấy điểm D
sao cho MA = MD
Xét ABM và DCM có:
MB = MC ( AM là trung tuyến-gt)
( đối đỉnh)
MA = MD ( cách vẽ điểm D)
Do đó ABM = DCM (c.g.c)
AB = CD ( hai cạnh tương ứng) (1)
và ( hai góc tương ứng)
Mà ( AM là phân giác-gt)
Nên ( cùng bằng )
CAD cân tại C ( có hai góc bằng nhau)
CA = CD ( hai cạnh bên) (2)
Từ (1) và (2) ta có AB = AC ( cùng bằng CD)
Vậy ABC cân tại A.
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Nguyễn Duy Tuấn
Dung lượng: |
Lượt tài: 1
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)