Thuat giai

Chia sẻ bởi Nguyễn Văn Định | Ngày 16/10/2018 | 42

Chia sẻ tài liệu: thuat giai thuộc Tư liệu tham khảo

Nội dung tài liệu:

CHƯƠNG 1 : THUẬT TOÁN – THUẬT GIẢI
I. KHÁI NIỆM THUẬT TOÁN – THUẬT GIẢI
II. THUẬT GIẢI HEURISTIC
III. CÁC PHƯƠNG PHÁP TÌM KIẾM HEURISTIC
III.1. Cấu trúc chung của bài toán tìm kiếm
III.2. Tìm kiếm chiều sâu và tìm kiếm chiều rộng
III.3. Tìm kiếm leo đồi
III.4. Tìm kiếm ưu tiên tối ưu (best-first search)
III.5. Thuật giải AT
III.6. Thuật giải AKT
III.7. Thuật giải A*
III.8. Ví dụ minh họa hoạt động của thuật giải A*
III.9. Bàn luận về A*
III.10. Ứng dụng A* để giải bài toán Ta-canh
III.11. Các chiến lược tìm kiếm lai
I. TỔNG QUAN THUẬT TOÁN – THUẬT GIẢI
Trong quá trình nghiên cứu giải quyết các vấn đề – bài toán, người ta đã đưa ra những nhận xét như sau:
Có nhiều bài toán cho đến nay vẫn chưa tìm ra một cách giải theo kiểu thuật toán và cũng không biết là có tồn tại thuật toán hay không.
Có nhiều bài toán đã có thuật toán để giải nhưng không chấp nhận được vì thời gian giải theo thuật toán đó quá lớn hoặc các điều kiện cho thuật toán khó đáp ứng.
Có những bài toán được giải theo những cách giải vi phạm thuật toán nhưng vẫn chấp nhận được.
Từ những nhận định trên, người ta thấy rằng cần phải có những đổi mới cho khái niệm thuật toán. Người ta đã mở rộng hai tiêu chuẩn của thuật toán: tính xác định và tính đúng đắn. Việc mở rộng tính xác định đối với thuật toán đã được thể hiện qua các giải thuật đệ quy và ngẫu nhiên. Tính đúng của thuật toán bây giờ không còn bắt buộc đối với một số cách giải bài toán, nhất là các cách giải gần đúng. Trong thực tiễn có nhiều trường hợp người ta chấp nhận các cách giải thường cho kết quả tốt (nhưng không phải lúc nào cũng tốt) nhưng ít phức tạp và hiệu quả. Chẳng hạn nếu giải một bài toán bằng thuật toán tối ưu đòi hỏi máy tính thực hiên nhiều năm thì chúng ta có thể sẵn lòng chấp nhận một giải pháp gần tối ưu mà chỉ cần máy tính chạy trong vài ngày hoặc vài giờ.
Các cách giải chấp nhận được nhưng không hoàn toàn đáp ứng đầy đủ các tiêu chuẩn của thuật toán thường được gọi là các thuật giải. Khái niệm mở rộng này của thuật toán đã mở cửa cho chúng ta trong việc tìm kiếm phương pháp để giải quyết các bài toán được đặt ra.
Một trong những thuật giải thường được đề cập đến và sử dụng trong khoa học trí tuệ nhân tạo là các cách giải theo kiểu Heuristic
II. THUẬT GIẢI HEURISTIC
Thuật giải Heuristic là một sự mở rộng khái niệm thuật toán. Nó thể hiện cách giải bài toán với các đặc tính sau:
Thường tìm được lời giải tốt (nhưng không chắc là lời giải tốt nhất)
Giải bài toán theo thuật giải Heuristic thường dễ dàng và nhanh chóng đưa ra kết quả hơn so với giải thuật tối ưu, vì vậy chi phí thấp hơn.
Thuật giải Heuristic thường thể hiện khá tự nhiên, gần gũi với cách suy nghĩ và hành động của con người.
Có nhiều phương pháp để xây dựng một thuật giải Heuristic, trong đó người ta thường dựa vào một số nguyên lý cơ bản như sau:
Nguyên lý vét cạn thông minh: Trong một bài toán tìm kiếm nào đó, khi không gian tìm kiếm lớn, ta thường tìm cách giới hạn lại không gian tìm kiếm hoặc thực hiện một kiểu dò tìm đặc biệt dựa vào đặc thù của bài toán để nhanh chóng tìm ra mục tiêu.
Nguyên lý tham lam (Greedy): Lấy tiêu chuẩn tối ưu (trên phạm vi toàn cục) của bài toán để làm tiêu chuẩn chọn lựa hành động cho phạm vi cục bộ của từng bước (hay từng giai đoạn) trong quá trình tìm kiếm lời giải.
Nguyên lý thứ tự: Thực hiện hành động dựa trên một cấu trúc thứ tự hợp lý của không gian khảo sát nhằm nhanh chóng đạt được một lời giải tốt.
Hàm Heuristic: Trong việc xây dựng các thuật giải Heuristic, người ta thường dùng các hàm Heuristic. Đó là các hàm đánh già thô, giá trị của hàm phụ thuộc vào trạng thái hiện tại của bài toán tại mỗi bước giải. Nhờ giá trị này, ta có thể chọn được cách hành động tương đối hợp lý trong từng bước của thuật giải.
Bài toán hành trình ngắn nhất – ứng dụng nguyên lý Greedy
Bài toán: Hãy tìm một hành trình cho một người giao hàng đi qua n điểm khác nhau, mỗi điểm đi qua một lần và trở về điểm xuất phát sao cho tổng chiều dài đoạn đường cần đi là ngắn nhất. Giả sử rằng có con đường nối trực tiếp từ giữa hai điểm bất kỳ.
Tất
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Nguyễn Văn Định
Dung lượng: 972,00KB| Lượt tài: 0
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)