Sangkien
Chia sẻ bởi Trung Văn Đức |
Ngày 13/10/2018 |
41
Chia sẻ tài liệu: sangkien thuộc Đại số 8
Nội dung tài liệu:
MỞ ĐẦU:
Trong đại số 8 hằng đẳng thức đáng nhớ là một nội dung rất quan trọng và cần thiết. Việc nắm vững, nhận dạng, để vận dụng các hằng đẳng thức vào giải toán là một nhu cầu không thể thiếu khi học đại số 8. Tuy nhiên khi vận dụng học sinh thường gặp phải những thuận lợi và khó khăn cần phải khắc phục sau:
Thuận lợi:
- Vận dụng tốt hằng đẳng thức đáng nhớ để giải toán, Học Sinh sẽ tiết kiệm được thời gian, bài giải gọn và hạn chế nhiều sai sót khi biến đổi.
- Hằng đẳng thức đáng nhớ là một công cụ không thể thiếu trong vốn kiến thức của Học Sinh, để vận dụng giải bài toán từ lúc bắt đầu học cho đến các lớp trên.
- Khi vận dụng hằng đẳng thức tốt, Học Sinh sẽ có kết quả bất ngờ, đầy hứng thú, kích thích tinh thần say mê học toán.
Khó khăn:
- Học Sinh thường gặp những bài toán mà khi biến đổi mới thấy được cần áp dụng dạng hằng đẳng thức nào.
- Phạm vi vận dụng hằng đẳng thức để giải toán rộng, nên không biết khi nào thì áp dụng.
- Khi vận dụng hằng đẳng thức thì Học Sinh còn nhầm lẫn về luỹ thừa, biểu thức, dấu, … dẫn đến bế tắc.
Do đó để vận dụng tốt hằng đẳng thức vào giải toán Đại Số lớp 8 (Chương I: phép nhân và phép chia các đa thức)
Học Sinh cần:
Học thuộc lòng các hằng đẳng thức đáng nhớ
Biết phối hợp với một số kiến thức khác
Sử dụng chính xác hằng đẳng thức mà nội dung từng bài toán yêu cầu.
Kết hợp với biến đổi, tính toán.
KẾT QUẢ:
Để học sinh có kết quả khả quan khi học Đại Số từ lớp 8 trở đi thì học sinh cần nắm chắc nội dung và cách giải quyết một số bài toán dạng hằng đẳng thức sau:
Những hằng đẳng thức đáng nhớ:
7 hằng đẳng thức:(SGK)
Với A, B là các biểu thức
(A + B)2 = A2 + 2AB + B2
(A – B)2 = A2 – 2AB + B2
A2 – B2 = (A + B)(A – B)
(A + B)3 = A3 + 3A2B +3AB2 +B3
(A – B)3 = A3 – 3A2B + 3AB2 - B3
A3 + B3 = (A + B) (A2 – AB + B2)
A3 – B3 = (A – B) (A2 + AB +B2)
Các hằng đẳng thức liên quan:
(A + B)2 = (A –B)2 + 4AB
(A – B)2 = (A +B)2 – 4AB
A3 + B3 = (A + B)3 – 3AB (A+B)
A3 + B3 = (A – B)3 + 3AB (A – B)
(A + B – C)2 = A2 + B2 + C2 + 2(AB - AC – BC)
Các hằng đẳng thức dạng tổng quát:
(A + B)n = An + n An-1B + . . .+ n ABn-1 + Bn
An – Bn = (A – B) (An-1 + An-2B + . . . +ABn-2 + Bn-1)
(A1 + A2 + . . . +An)2 = A12 + A22 + . . . + An2 + 2(A1A2 + A1A3+. . . +An-1An)
Aùp dụng: Chúng tôi tạm chia theo nội dung sau, nhưng tất cả đều sử dụng hằng đẳng thức để giải.
Thực hiện các phép tính:
Phương pháp:
Xem biểu thức đã cho có dạng hằng đẳng thức nào.
Biến đổi biểu thức đã cho để xuất hiện dạng hằng đẳng thức.
Thực hiện các hằng đẳng thức hợp lý ta có kết quả (có thể kết quả không gọn).
Bài tập:
(a – b – c)2 – (a –b + c)2
(a – x – y )3 – (a + x – y )3
(a + 1)(a + 2)(a2 + 4)(a – 1)(a2 + 1)(a – 2)
(1 – x - 2x3 + 3x2)(1 – x + 2x3 – 3x2)
(a2 – 1)(a2 – a +1)(a2 + a +1)
Giải:
(a2 – 1)(a2 – a +1)(a2 + a +1)
= (a + 1) (a – 1) (a2 – a + 1) (a2 + a +1)
= [(a + 1) (a2 – a +1)] [(
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Trung Văn Đức
Dung lượng: 142,50KB|
Lượt tài: 3
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)