PHUONG PHAP tOAN HINH 5 VA BAI TAP HAY

Chia sẻ bởi Phạm Văn Quân | Ngày 09/10/2018 | 25

Chia sẻ tài liệu: PHUONG PHAP tOAN HINH 5 VA BAI TAP HAY thuộc Toán học 5

Nội dung tài liệu:

ÔN tập hinh hoc cho hoc siNH LƠP 5

Củng cố về cách xác định đáy và kẻ đường cao tương ứng với đáy thông qua một số hình vẽ:
- Trước hết phải cho học sinh nhắc lại cách xác định đáy và vẽ đường cao tương ứng với đáy. Sau đó giáo viên vẽ hình tam giác yêu cầu học sinh xác định các đáy và dùng eke để vẽ các đường cao của tam giác đó.


Hỏi: - Trong tam giác ABC nếu chọn BC làm đáy thì đỉnh đối diện với đáy BC là đỉnh nào? (đỉnh A).
- Nếu chọn AC làm đáy thì đỉnh đối diện với cạnh AC là đỉnh nào? (đỉnh B)
- Nếu chọn cạnh AB là đáy thì đỉnh đối diện với cạnh AB là đỉnh nào? (đỉnh C).
Sau đó yêu cầu học sinh kẻ các đường cao tương ứng với các đáy AB, AC, BC
Qua hình vẽ trên ta thấy cả 3 đường cao đều nằm trong tam giác. Vậy đường cao nằm ngoài tam giác ta vẽ như thế nào?
Giáo viên vẽ tiếp tam giác MNQ lên bảng
Hỏi: Muốn vẽ đường cao tương ứng với đáy QN ta phải xác định được cái gì? (đỉnh đối diện với đáy QN đó là đỉnh M)
Giáo viên hướng dẫn dùng đường kẻ phụ: kéo dài đáy QN về phía Q sau đó dùng eke để vẽ.
Tiếp tục yêu cầu học sinh vẽ đường cao tương ứng với đáy QM (kéo dài đáy QM một đoạn về phía Q rồi dùng eke để vẽ).


* Qua hình vẽ trên ta thấy đường cao tương ứng với đáy QN và QM đều nằm ngoài tam giác.
Vậy để vẽ được đường cao nằm ngoài tam giác ta phải chú ý điều gì? (dùng đường kẻ phụ kéo dài đáy về một phía).
* Sau dó giáo viên tiếp tục vẽ thêm một số hình tam giác khác yêu cầu học sinh kẻ đường cao tương ứng với đáy.
Bài tập: Vẽ đường cao BH cho mỗi tam giác sau:







* Sau khi học sinh nắm vững cách xác định đáy và chiều cao tương ứng với đáy, giáo viên tiếp tục hướng dẫn học sinh xác định những tam giác có cùng chung đáy và những tam giác có chung chiều cao, thông qua một số bài tập sau:

Bài 1: Dựa vào hình vẽ em hãy cho biết AH là chiều cao của những tam giác nào?








Bài 2: Cho hình vẽ sau:
Nêu tên những tam giác
có chung chiều cao MK.
Nêu tên những tam giác
có chung chiều cao CH.



Bài 3: Cho tứ giác ABCD, nối AC và BD cắt nhau tại E (xem hình vẽ)
Nêu tên những tam giác có chung cạnh đáy AC?
Nêu tên những tam giác có chung cạnh đáy BD?
Nêu tên những tam giác có chung cạnh đáy DE?
Nêu tên những tam giác có chung cạnh đáy EB?
Nêu tên những tam giác có chung cạnh đáy AE?
Nêu tên những tam giác có chung cạnh đáy EC?


* Sau khi học sinh xác định được những tam giác có chung đáy, có chung chiều cao, để tính được diện tích các hình tam giác liên quan, giáo viên phải giúp học sinh nắm được mối quan hệ giữa các yếu tố trong tam giác (đáy, chiều cao và diện tích).


Mối quan hệ giữa các yếu tố trong tam giác.
Bài toán 1:
Tam giác ABC có đáy BC bằng 20cm và chiều cao tương ứng với đáy là 8cm. Kéo dài đáy BC thêm một đoạn CD 5cm nữa thì diện tích sẽ tăng thêm là bao nhiêu?
Bài toán này được học sinh khá dễ dàng giải được.



Cách 1: Diện tích tam giác ABC là : (20 x 8) :2 = 80 (cm2)
Khi mở rộng đáy thêm 5cm thì phần mở rộng có dạng là một hình tam giác và chiều cao phần mở rộng bằng chính chiều cao tam giác ban đầu (bằng chiều cao hạ từ đỉnh A xuống BD).
Độ dài đoạn BD là: 20 + 5 = 25 (cm)
Diện tích tam giác ABD là: 25 x 8 : 2 = 100 (cm2)
Diện tích tăng thêm là: 100 – 80 = 20 (cm2)
Đáp số : 20cm2
Cách 2: Chiều cao phần mở rộng chính bằng chiều cao tam giác ban đầu ( bằng chiều cao hạ từ đỉnh A xuống BD).
Diện tích phần mở rộng là: 5 x 8 : 2 = 20 (cm2)
Đáp số: 20 cm2
Việc quan trọng ở đây là học sinh xác định được hai tam giác ABC và ACD có chung chiều cao (chiều cao hạ từ đỉnh A xuống BD).
Từ bài toán trên hỏi:
Em hãy so sánh đáy phần mở rộng và đáy phần tam giác ban đầu?
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Phạm Văn Quân
Dung lượng: 315,00KB| Lượt tài: 0
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)