PHAN TICH DA THUC THANH NHAN TU
Chia sẻ bởi Trần Thị Hằng |
Ngày 12/10/2018 |
46
Chia sẻ tài liệu: PHAN TICH DA THUC THANH NHAN TU thuộc Đại số 8
Nội dung tài liệu:
PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ
Bài 1: Phân tích đa thức thành nhân tử ( Gợi ý: Dùng hằng đẳng thức)
a) 25x2 - 10xy + y2 b) 8x3 + 36x2y + 54xy2 + 27y3
c) 81x2 – 64y2 d) (xy + 4)2 – (2x + 2y)2
e) f)
( Dùng hằng đẳng thức số 3) ( Dùng hằng đẳng thức số 6 và 7)
Bài 2: Phân tích đa thức thành nhân tử : ( Dùng phương pháp nhóm hạng tử)
a) b)
c) x2y + xy2 – x – y d) 8xy3 – 5xyz – 24y2 + 15z
e) x3 + y(1 – 3x2) + x(3y2 – 1) – y3 f) x3 + 3x2y + x + 3xy2 + y + y3
Bài 3: Phân tích đa thức thành nhân tử : ( Dùng phương pháp tách hạng tử)
a) x2 - 6x + 8 b) x2 – 8x + 12
c) d) x3 – 7x – 6
( c - a = c - b + b - a) ( Tách - 7x = -4x - 3x ) Bài 4: Phân tích đa thức thành nhân tử : ( Dùng phương pháp thêm - bớt hạng tử )
a) x4 + 4 b) a4 + 64
c) x5 + x + 1 d) x5 + x - 1 Bài 4*: Phân tích đa thức thành nhân tử : ( Dùng phương pháp đặt ẩn phụ)
Bài giải mẫu : (x2 + x + 1)(x2 + x + 2) – 12 Đặt: x2 + x + 1 = y , ta có x2 + x + 2 = y + 1 .
Ta có: (x2 + x + 1)(x2 + x + 2) – 12 = y(y + 1) – 12
= y2 + y – 12 = y2 – 9 + y – 3 = (y – 3)(y + 3) + (y – 3) = (y – 3)(y + 4)
Thay x2 + x + 1 = y , ta được :
(x2 + x + 1 – 3)( x2 + x + 1 + 4) = (x2 + x – 2)( x2 + x + 5)
= [(x – 1)(x + 1) + (x – 1)]( x2 + x + 5) = (x - 1)(x + 2)( x2 + x + 5) a) (x2 + x)2 – 2(x2 + x) – 15 b) (x + 2)(x + 3)(x + 4)(x + 5) – 24
c) (x2 + 8x + 7)( x2 + 8x + 15) + 15 d) (x2 + 3x + 1)( x2 + 3x + 2) – 6 Bài 5: Phân tích đa thức thành nhân tử : ( Dùng phối hợp nhiều phương pháp )
a) x2 + 4xy + 3y2 b) 2x2 - 5xy + 2y2 ( Tách -5xy = -4xx - xy)
c) x2(y - z) + y2(z - x) + z2(x - y) d) 2x2 – 7xy + 3y2 + 5xz – 5yz + 2z2
Bài 6: Phân tích đa thức thành nhân tử : ( Dùng phương pháp nhẩm nghiệm) Định lí ( Bedu) : Dư trong phép chia f(x) cho x - a bằng số a.
Suy ra : Nếu f(x) có nghiệm x = a thì f(a) = 0. Khi đó, f(x) có một nhân tử là x – a và f(x) có thể viết dưới dạng f(x) = (x – a).q(x)
Bài giải mẫu : Phân tích đa thức x3 – 5x2 + 3x + 9 thành nhân tử
Với x = -1. ( Dùng MTBT để tìm 1 nghiệm)
Ta có : (-1)3 - 5.(-1)2 + 3.(-1) + 9 = -1 - 5 -3 + 9 = 0. Vậy x = -1 là một nghiệm của đa thức nên đa thức chia hết cho x - (-1) = x + 1.
Từ cơ sở trên, ta phân tích đa thức thành :
x3 – 5x2 + 3x + 9 = x3 + x2 – 6x2 - 6x + 9x + 9 ( Để làm xuất hiên nhân tử x + 1)
= ( x3 + x2) – ( 6x2 + 6x) + ( 9x + 9 ) = x2( x + 1) - 6x( x + 1) + 9( x + 1)
= (x + 1)( x2 - 6x + 9) = ( x + 1)( x - 3)2 a) x2 – 7x + 10 b) 4 x2 – 3x – 1
c) d) x2(y – z) +
Bài 1: Phân tích đa thức thành nhân tử ( Gợi ý: Dùng hằng đẳng thức)
a) 25x2 - 10xy + y2 b) 8x3 + 36x2y + 54xy2 + 27y3
c) 81x2 – 64y2 d) (xy + 4)2 – (2x + 2y)2
e) f)
( Dùng hằng đẳng thức số 3) ( Dùng hằng đẳng thức số 6 và 7)
Bài 2: Phân tích đa thức thành nhân tử : ( Dùng phương pháp nhóm hạng tử)
a) b)
c) x2y + xy2 – x – y d) 8xy3 – 5xyz – 24y2 + 15z
e) x3 + y(1 – 3x2) + x(3y2 – 1) – y3 f) x3 + 3x2y + x + 3xy2 + y + y3
Bài 3: Phân tích đa thức thành nhân tử : ( Dùng phương pháp tách hạng tử)
a) x2 - 6x + 8 b) x2 – 8x + 12
c) d) x3 – 7x – 6
( c - a = c - b + b - a) ( Tách - 7x = -4x - 3x ) Bài 4: Phân tích đa thức thành nhân tử : ( Dùng phương pháp thêm - bớt hạng tử )
a) x4 + 4 b) a4 + 64
c) x5 + x + 1 d) x5 + x - 1 Bài 4*: Phân tích đa thức thành nhân tử : ( Dùng phương pháp đặt ẩn phụ)
Bài giải mẫu : (x2 + x + 1)(x2 + x + 2) – 12 Đặt: x2 + x + 1 = y , ta có x2 + x + 2 = y + 1 .
Ta có: (x2 + x + 1)(x2 + x + 2) – 12 = y(y + 1) – 12
= y2 + y – 12 = y2 – 9 + y – 3 = (y – 3)(y + 3) + (y – 3) = (y – 3)(y + 4)
Thay x2 + x + 1 = y , ta được :
(x2 + x + 1 – 3)( x2 + x + 1 + 4) = (x2 + x – 2)( x2 + x + 5)
= [(x – 1)(x + 1) + (x – 1)]( x2 + x + 5) = (x - 1)(x + 2)( x2 + x + 5) a) (x2 + x)2 – 2(x2 + x) – 15 b) (x + 2)(x + 3)(x + 4)(x + 5) – 24
c) (x2 + 8x + 7)( x2 + 8x + 15) + 15 d) (x2 + 3x + 1)( x2 + 3x + 2) – 6 Bài 5: Phân tích đa thức thành nhân tử : ( Dùng phối hợp nhiều phương pháp )
a) x2 + 4xy + 3y2 b) 2x2 - 5xy + 2y2 ( Tách -5xy = -4xx - xy)
c) x2(y - z) + y2(z - x) + z2(x - y) d) 2x2 – 7xy + 3y2 + 5xz – 5yz + 2z2
Bài 6: Phân tích đa thức thành nhân tử : ( Dùng phương pháp nhẩm nghiệm) Định lí ( Bedu) : Dư trong phép chia f(x) cho x - a bằng số a.
Suy ra : Nếu f(x) có nghiệm x = a thì f(a) = 0. Khi đó, f(x) có một nhân tử là x – a và f(x) có thể viết dưới dạng f(x) = (x – a).q(x)
Bài giải mẫu : Phân tích đa thức x3 – 5x2 + 3x + 9 thành nhân tử
Với x = -1. ( Dùng MTBT để tìm 1 nghiệm)
Ta có : (-1)3 - 5.(-1)2 + 3.(-1) + 9 = -1 - 5 -3 + 9 = 0. Vậy x = -1 là một nghiệm của đa thức nên đa thức chia hết cho x - (-1) = x + 1.
Từ cơ sở trên, ta phân tích đa thức thành :
x3 – 5x2 + 3x + 9 = x3 + x2 – 6x2 - 6x + 9x + 9 ( Để làm xuất hiên nhân tử x + 1)
= ( x3 + x2) – ( 6x2 + 6x) + ( 9x + 9 ) = x2( x + 1) - 6x( x + 1) + 9( x + 1)
= (x + 1)( x2 - 6x + 9) = ( x + 1)( x - 3)2 a) x2 – 7x + 10 b) 4 x2 – 3x – 1
c) d) x2(y – z) +
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Trần Thị Hằng
Dung lượng: 247,00KB|
Lượt tài: 4
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)