On tập học kì 1 toán 8
Chia sẻ bởi Lê Nguyên Thu Thao |
Ngày 13/10/2018 |
51
Chia sẻ tài liệu: on tập học kì 1 toán 8 thuộc Đại số 8
Nội dung tài liệu:
ÔN TẬP HỌC KÌ I( HÌNH HỌC 8)
Bài 1 *: Cho tam giác ABC cân tại A , trung tuyến AM. Gọi I là trung điểm AC, K là điểm đối xứng của M qua I.
Tứ giác AMCK là hình gì ? Vì sao?
Tứ giác AKMB là hình gì ? Vì sao?
Trên tia đối của tia MA lấy điểm L sao cho ML =MA. Chứng minh tứ giác ABEC là hình thoi
Bài 2*: Cho hình thoi ABCD, gọi O là giao điểm của hai đường chéo AC và BD. Qua B vẽ đường thẳng song song với AC, Qua C vẽ đường thẳng song song với BD, chúng cắt nnhau tại I
Chứng minh : OBIC là hình chữ nhật
Chứng minh AB=OI
Tìm điều kiện của hình thoi ABCD để tứ giác OBIC là hình vuông
Bài 3*: Cho hình bình hành ABCD có BC=2AB và góc A =600. Gọi E, F theo thứ tự là trung điểm của BC, AD.
Chứng minh AE vuông góc với BF
Tứ giác ECDF là hình gì ? Vì sao?
Tứ giác ABED là hình gì ? Vì sao?
Gọi M là điểm đối xứng của A qua B . Chứng minh tứ giác BMCD là hình chữ nhật.
Chứng minh M, E, Dthẳng hàng
Bài 4: Cho hình bình hành ABCD có BC=2AB. Gọi M, N theo thứ tự là trung điểm của BC và AD. Gọi P là giao điểm của AM với BN, Q là giao điểm của MD với CN, K là giao điểm của tia BN với tia CD
Chứng minh tứ giác MBKD là hình thang
PMQN là hình gì?
Hình bình hành ABCD có thêm điều kiện gì để PMQN là hình vuông
Bài 5: Cho tam giác ABC (ABBDEF là hình gì? Vì sao?
Chứng minh DEFK là hình thang cân
Gọi H là trực tâm của tam gíc ABC, M,N,theo thứ tự là trung điểm của HA, HB, HC. Chứng minh các đoạn thẳng MF, NE, PD bằng nhau và cắt nhau tại trung điểm mỗi đoạn.
Bài 6: Cho tam giác ABC có AB=6cm, AC=8cm, BC=10cm,. Gọi AM là trung tuyến của tam giác.
Tính đoạn AM
Kẻ MD vuông góc với AB, ME vuông góc Với AC. Tứ giác ADME có dạng đặc biệt nào?
DECB có dạng đặc biệt nào?
Bài 7:Cho tam giác nhọn ABC, gọi H là trực tâm tam giác, M là trung điểm BC. Gọi D là điểm đối xứng của H qua M.
Chứng minh các tam gíac ABD, ACD vuông
Gọi I là trung điểm AD. Chứng minh IA=IB=IC=ID
Bài 8: Cho tam giác ABC vuông tại A có góc B bằng 600, kẻ tia Ax song song BC . Trên tia Ax lấy điểm Dsao cho AD=DC.
Tính các góc và
Chứng minh tứ giác ABCD là hình thang cân
Gọi E là trung điểm BC. Chứng minh ADEb là hình thoi
Bài 9:Cho hình vuông ABCD, E là điểm trên cạnh DC, F là điểm trên tia đối tia BC sao cho BF= DE.
Chứng minh tam giác AEF vuông cân
Gọi I là trung điểm EF. Chứng minh I thuộc BD.
Lấy K đối xứng của A qua I. Chứng minh AEKF là hình vuông
Bài 10: Cho hình vuông ABCD cạnh a, điểm E thuộc cạnh CD, gọi AF là phân giác của tam giác ADE. Gọi Hlà hình chiếu của F trên AE. Gọi K là giao điểm của FH và BC.
Tính độ dài AH
Chứng minh AKlà phân giác của góc BAC
Tính chu vi và diện tích tam giáctam giác CKF
Bài 1 *: Cho tam giác ABC cân tại A , trung tuyến AM. Gọi I là trung điểm AC, K là điểm đối xứng của M qua I.
Tứ giác AMCK là hình gì ? Vì sao?
Tứ giác AKMB là hình gì ? Vì sao?
Trên tia đối của tia MA lấy điểm L sao cho ML =MA. Chứng minh tứ giác ABEC là hình thoi
Bài 2*: Cho hình thoi ABCD, gọi O là giao điểm của hai đường chéo AC và BD. Qua B vẽ đường thẳng song song với AC, Qua C vẽ đường thẳng song song với BD, chúng cắt nnhau tại I
Chứng minh : OBIC là hình chữ nhật
Chứng minh AB=OI
Tìm điều kiện của hình thoi ABCD để tứ giác OBIC là hình vuông
Bài 3*: Cho hình bình hành ABCD có BC=2AB và góc A =600. Gọi E, F theo thứ tự là trung điểm của BC, AD.
Chứng minh AE vuông góc với BF
Tứ giác ECDF là hình gì ? Vì sao?
Tứ giác ABED là hình gì ? Vì sao?
Gọi M là điểm đối xứng của A qua B . Chứng minh tứ giác BMCD là hình chữ nhật.
Chứng minh M, E, Dthẳng hàng
Bài 4: Cho hình bình hành ABCD có BC=2AB. Gọi M, N theo thứ tự là trung điểm của BC và AD. Gọi P là giao điểm của AM với BN, Q là giao điểm của MD với CN, K là giao điểm của tia BN với tia CD
Chứng minh tứ giác MBKD là hình thang
PMQN là hình gì?
Hình bình hành ABCD có thêm điều kiện gì để PMQN là hình vuông
Bài 5: Cho tam giác ABC (AB
Chứng minh DEFK là hình thang cân
Gọi H là trực tâm của tam gíc ABC, M,N,theo thứ tự là trung điểm của HA, HB, HC. Chứng minh các đoạn thẳng MF, NE, PD bằng nhau và cắt nhau tại trung điểm mỗi đoạn.
Bài 6: Cho tam giác ABC có AB=6cm, AC=8cm, BC=10cm,. Gọi AM là trung tuyến của tam giác.
Tính đoạn AM
Kẻ MD vuông góc với AB, ME vuông góc Với AC. Tứ giác ADME có dạng đặc biệt nào?
DECB có dạng đặc biệt nào?
Bài 7:Cho tam giác nhọn ABC, gọi H là trực tâm tam giác, M là trung điểm BC. Gọi D là điểm đối xứng của H qua M.
Chứng minh các tam gíac ABD, ACD vuông
Gọi I là trung điểm AD. Chứng minh IA=IB=IC=ID
Bài 8: Cho tam giác ABC vuông tại A có góc B bằng 600, kẻ tia Ax song song BC . Trên tia Ax lấy điểm Dsao cho AD=DC.
Tính các góc và
Chứng minh tứ giác ABCD là hình thang cân
Gọi E là trung điểm BC. Chứng minh ADEb là hình thoi
Bài 9:Cho hình vuông ABCD, E là điểm trên cạnh DC, F là điểm trên tia đối tia BC sao cho BF= DE.
Chứng minh tam giác AEF vuông cân
Gọi I là trung điểm EF. Chứng minh I thuộc BD.
Lấy K đối xứng của A qua I. Chứng minh AEKF là hình vuông
Bài 10: Cho hình vuông ABCD cạnh a, điểm E thuộc cạnh CD, gọi AF là phân giác của tam giác ADE. Gọi Hlà hình chiếu của F trên AE. Gọi K là giao điểm của FH và BC.
Tính độ dài AH
Chứng minh AKlà phân giác của góc BAC
Tính chu vi và diện tích tam giáctam giác CKF
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Lê Nguyên Thu Thao
Dung lượng: 51,00KB|
Lượt tài: 3
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)