Ngân hàng đề thi (của Thầy Tài)
Chia sẻ bởi Trịnh Văn Tài |
Ngày 14/10/2018 |
48
Chia sẻ tài liệu: Ngân hàng đề thi (của Thầy Tài) thuộc Vật lí 9
Nội dung tài liệu:
Đề thi học sinh giỏi lớp 8
MÔN TOÁN
Thời gian: 120 phút
Bài 1 (4 điểm)
Cho biểu thức A = với x khác -1 và 1.
a, Rút gọn biểu thức A.
b, Tính giá trị của biểu thức A tại x .
c, Tìm giá trị của x để A < 0.
Bài 2 (3 điểm)
Cho .
Chứng minh rằng .
Bài 3 (3 điểm)
Giải bài toán bằng cách lập phương trình.
Một phân số có tử số bé hơn mẫu số là 11. Nếu bớt tử số đi 7 đơn vị và tăng mẫu lên 4 đơn vị thì sẽ được phân số nghịch đảo của phân số đã cho. Tìm phân số đó.
Bài 4 (2 điểm)
Tìm giá trị nhỏ nhất của biểu thức A = .
Bài 5 (3 điểm)
Cho tam giác ABC vuông tại A có góc ABC bằng 600, phân giác BD. Gọi M,N,I theo thứ tự là trung điểm của BD, BC, CD.
a, Tứ giác AMNI là hình gì? Chứng minh.
b, Cho AB = 4cm. Tính các cạnh của tứ giác AMNI.
Bài 6 (5 điểm)
Hình thang ABCD (AB // CD) có hai đường chéo cắt nhau tại O. Đường thẳng qua O và song song với đáy AB cắt các cạnh bên AD, BC theo thứ tự ở M và N.
a, Chứng minh rằng OM = ON.
b, Chứng minh rằng .
c, Biết SAOB= 20082 (đơn vị diện tích); SCOD= 20092 (đơn vị diện tích). Tính SABCD.
Đáp án
Bài 1 (4 điểm)
a, ( 2 điểm )
Với x khác -1 và 1 thì :
A=
0,5đ
=
0,5đ
=
0,5đ
=
KL
0,5đ
b, (1 điểm)
Tại x = = thì A =
0,25đ
=
0,25đ
KL
0,5đ
c, (1điểm)
Với x khác -1 và 1 thì A<0 khi và chỉ (1)
0,25đ
Vì với mọi x nên (1) xảy ra khi và chỉ khi
KL
0,5đ
0,25đ
Bài 2 (3 điểm)
Biến đổi đẳng thức để được
0,5đ
Biến đổi để có
0,5đ
Biến đổi để có (*)
0,5đ
Vì ;;; với mọi a, b, c
nên (*) xảy ra khi và chỉ khi ; và ;
0,5đ
0,5đ
Từ đó suy ra a = b = c
0,5đ
Bài 3 (3 điểm)
Gọi tử số của phân số cần tìm là x thì mẫu số của phân số cần tìm là x+11. Phân số cần tìm là (x là số nguyên khác -11)
0,5đ
Khi bớt tử số đi 7 đơn vị và tăng mẫu số 4 đơn vị ta được phân số
(x khác -15)
0,5đ
Theo bài ra ta có phương trình =
0,5đ
Giải phương trình và tìm được x= -5 (thoả mãn)
1đ
Từ đó tìm được phân số
KL
0,5đ
Bài 4 (2 điểm)
Biến đổi để có A=
0,5đ
=
0,5đ
Vì và nên do đó
0,5đ
Dấu = xảy ra khi và chỉ khi
0,25đ
KL
0,25đ
Bài 5 (3 điểm)
a,(1 điểm)
Chứng minh được tứ giác AMNI là hình thang
0,5đ
Chứng minh được AN=MI, từ đó suy ra tứ giác AMNI là hình thang cân
0,5đ
b,(2điểm)
Tính được AD = ; BD = 2AD =
AM =
0,5đ
Tính được NI = AM =
0,5đ
DC = BC = , MN =
0,5đ
Tính được AI =
0,5đ
Bài 6 (5 điểm)
a, (1,5 điểm)
Lập luận để có ,
0,5đ
Lập luận để có
0,5đ
OM = ON
0,5đ
b, (
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Trịnh Văn Tài
Dung lượng: 2,30MB|
Lượt tài: 22
Loại file: rar
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)