LUYEN TAP VE DAY SO LOP 4

Chia sẻ bởi Huỳnh Võ Hoàng Huân | Ngày 09/10/2018 | 30

Chia sẻ tài liệu: LUYEN TAP VE DAY SO LOP 4 thuộc Toán học 4

Nội dung tài liệu:

DẠNG TOÁN VỀ DÃY SỐ
Một số lưu ý khi giải toán về “dãy số”
Trong bài toán về dãy số thường người ta không cho biết cả dãy số (vì dãy số có nhiều số không thể viết ra hết được) vì vậy, phải tìm ra được quy luật của dãy (mà có rất nhiều quy luật khác nhau) mới tìm được các số mà dãy số không cho biết. Đó là những quy luật của dãy số cách đều, dãy số không cách đều hoặc dựa vào dấu hiệu chia hết để tìm ra quy luật.Ở dạng 2: Muốn kiểm tra số A có thoả mãn quy luật của dãy đã cho hay không? Ta cần xem dãy số cho trước và số cần xác định có cùng tính chất hay không? (Có cùng chia hết cho một số nào đó hoặc có cùng số dư) thì số đó thuộc dãy đã cho.Ở dạng 3 và 4: Học sinh phải được tự tìm ra công thức tổng quát, vận dụng một cách thành thạo và biết biến đổi công thức để làm các bài toán khác.
Ở dạng 9: Có các yêu cầu:
+ Tìm tổng các số hạng của dãy.
+ Tính nhanh tổng.
Khi giải: Sau khi tìm ra quy luật của dãy, ta sắp xếp các số theo từng cặp sao cho có tổng đều bằng nhau, sau đó tìm số cặp rồi tìm tổng các số hạng của dãy. Chú ý: Khi tìm số cặp số mà còn dư một số hạng thì khi tìm tổng ta phải cộng số dư đó vào.
Nếu tính nhanh tổng của các phân số phải dựa vào tính chất của phân số.
Ở dạng 10: Đó là dãy chữ khi giải phải dựa vào quy luật của dãy, sau đó có thể xem mỗi nhóm chữ có tất cả bao nhiêu chữ rồi đi tìm có tất cả bao nhiêu nhóm và đó chính là phần trả lời của bài toán.
* Bài tập lự luyện:
Bài 1: Cho dãy số: 1, 4, 7, 10,…
a. Nêu quy luật của dãy.
b. Số 31 có phải là số hạng của dãy không?
c. Số 2009 có thuộc dãy này không? Vì sao?
Bài 2: Cho dãy số: 1004, 1010, 1016,…, 2012.
Hỏi số 1004 và 1760 có thuộc dãy số trên hay không?
Bài 3: Cho dãy số: 1, 7, 13, 19,…,
a. Nêu quy luật của dãy số rồi viết tiếp 3 số hạng tiếp theo.
b. Trong 2 số 1999 và 2009 thì số nào thuộc dãy số? Vì sao?
Bài 4: Cho dãy số: 3, 8, 13, 18,……
Có số tự nhiên nào có chữ số tận cùng là 6 mà thuộc dãy số trên không?
Bài 5: Cho dãy số: 1, 3, 6, 10, 15,……, 45, 55,……
a. Số 1997 có phải là số hạng của dãy số này hay không?
b. Số 561 có phải là số hạng của dãy số này hay không?
Dạng 3: Tìm số số hạng của dãy
* Cách giải ở dạng này là:
Đối với dạng toán này, ta thường sử dụng phương pháp giải toán khoảng cách (toán trồng cây). Ta có công thức sau :
Số các số hạng của dãy = số khoảng cách+ 1.
Đặc biệt, nếu quy luật của dãy là : Mỗi số hạng đứng sau bằng số hạng liền trước cộng với số không đổi d thì:
Số các số hạng của dãy = ( Số hạng lớn nhất – Số hạng nhỏ nhất ) : d + 1.
Các ví dụ:
Bài 1: Cho dãy số 11; 14; 17;.....;65; 68.
Hãy xác định dãy số trên có bao nhiêu số hạng?
Lời giải :
Ta có : 14 - 11= 3; 17 - 14 = 3;....
Vậy quy luật của dãy số đó là mỗi số hạng đứng liền sau bằng số hạng đứmg liền trước nó cộng với 3. Số các số hạng của dãy số đó là:
( 68 - 11 ) : 3 + 1 = 20 ( số hạng )
Bài 2: Cho dãy số: 2, 4, 6, 8, 10,……, 1992
Hãy xác định dãy số trên có bao nhiêu số hạng?
Giải:
Ta thấy: 4 – 2 = 2 ; 8 – 6 = 2
6 – 4 = 2 ; ………
Vậy, quy luật của dãy số là: Mỗi số hạng đứng sau bằng một số hạng đứng trước cộng với 2. Nói các khác: Đây là dãy số chẵn hoặc dãy số cách đều 2 đơn vị.
Dựa vào công thức trên:
(Số hạng cuối – số hạng đầu) : khoảng cách + 1
Ta
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Huỳnh Võ Hoàng Huân
Dung lượng: 147,50KB| Lượt tài: 1
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)