Hay vo doi

Chia sẻ bởi Kim Anh Tuan | Ngày 13/10/2018 | 60

Chia sẻ tài liệu: hay vo doi thuộc Đại số 8

Nội dung tài liệu:

i : Các kiến thức cần lưu ý

1, Định nghĩa bất đẳng thức
+ a nhỏ hơn b , kí hiệu a < b
+ a lớn hơn b , kí hiệu a > b ,
+ a nhỏ hơn hoặc bằng b , kí hiệu a < b,
+ a lớn hơn hoặc bằng b , kí hiệu a > b ,
2, Một số tính chất cơ bản của bất dẳng thức :
a, Tính chất 1: a > b <=> b < a
b, Tính chất 2: a > b và b > c => a > c


c, Tính chất 3: a > b <=> a + c > b + c
Hệ quả : a > b <=> a - c > b - c
a + c > b <=> a > b - c
d, Tính chất 4 : a > c và b > d => a + c > b + d
a > b và c < d => a - c > b - d
e, Tính chất 5 : a > b và c > 0 => ac > bd
a > b và c < 0 => ac < bd
f, Tính chất 6 : a > b > 0 ; c > d > 0 => ac > bd
g, Tính chất 7 : a > b > 0 => an > bn
a > b <=> an > bn với n lẻ .
h, Tính chất 8 : a > b ; ab > 0 =>
3, Một số bất đẳng thức thông dụng :
a, Bất đẳng thức Côsi :
Với 2 số dương a , b ta có :
Dấu đẳng thức xảy ra khi : a = b
b, Bất đẳng thức Bunhiacôpxki :
Với mọi số a ; b; x ; y ta có : ( ax + by )2 (a2 + b2)(x2 + y2)
Dấu đẳng thức xảy ra <=>
c, Bất đẳng thức giá trị tuyệt đối :

Dấu đẳng thức xảy ra khi : ab 0


II : Một số phương pháp chứng minh bất đẳng thức

1.Phương pháp 1 : Dùng định nghĩa
- Kiến thức : Để chứng minh A > B , ta xét hiệu A - B rồi chứng minh A - B > 0 .
- Lưu ý : A2 0 với mọi A ; dấu `` = `` xảy ra khi A = 0 .
- Ví dụ :
Bài 1.1 :
Với mọi số : x, y, z chứng minh rằng : x2 + y2 + z2 +3 2(x + y + z)
Giải :
Ta xét hiệu : H = x2 + y2 + z2 +3 - 2( x + y + z)
= x2 + y2 + z2 +3 - 2x - 2y - 2z
= (x2 - 2x + 1) + (y2 - 2y + 1) + (z2 - 2z + 1)
= (x - 1)2 + (y - 1)2 + (z - 1)2
Do (x - 1)2 0 với mọi x
(y - 1)2 0 với mọi y
(z - 1)2 0 với mọi z
=> H 0 với mọi x, y, z
Hay x2 + y2 + z2 +3 2(x + y + z) với mọi x, y, z .
Dấu bằng xảy ra <=> x = y = z = 1.
Bài 1.2 :
Cho a, b, c, d, e là các số thực :
Chứng minh rằng : a2 + b2 + c2 + d2 + e2 a(b + c + d + e)
Giải :
Xét hiệu : H = a2 + b2 + c2 + d2 + e2 - a(b + c + d + e)
= 2 + 2 + 2 + 2
Do 2 0 với mọi a, b
Do2 0 với mọi a, c
Do 2 0 với mọi a, d
Do 20 với mọi a, e
=> H 0 với mọi a, b, c, d, e
Dấu `` = `` xảy ra <=> b = c = d = e
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Kim Anh Tuan
Dung lượng: 133,50KB| Lượt tài: 3
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)